ボールねじの特長

Feature of Ball Screws

●高い機械効率

KSSボールねじは、ねじ軸とナットの間に鋼球を挿入した 転がり接触をしていますので、一般的に90%程度の高い機 械効率をもっており、従来の送りねじと比較して所要トル クは1/3以下になります。また直線運動を回転運動に変換 (逆作動)することも容易にできます(図 A-81)。

●軸方向すきま

従来の三角ねじや台形ねじ等は、軸方向すきまを小さくす ると、すべり摩擦のため回転トルクは重くなります。KSS ボールねじは、軸方向すきまをゼロにした状態でも非常に 軽く回転させることができます。またダブルナットを使用 することにより、剛性を高めることができます。

●高精度

KSSボールねじは、恒温で温度管理された工場において、 超精密送りねじ及びねじゲージの加工技術を用いて、加工、 組立、検査を行っています。精度が高く、正確な位置決めに 高い信頼性を備えています。

ボールねじの作動は、適切な材料に熱処理を加えて生産さ れたころがり接触運動のため、摩擦抵抗が極めて小さく、 ほとんど摩耗を生じませんので、長時間にわたって高精度 を維持することができます。

Forward Efficiency (正効率) $\mu = 0.003$ $\mu = 0.005$ $\mu = 0.010$ Ball Screw (ボールねじ) μ: Friction Coefficient (摩擦係数) 70 u = 0.160 u = 0.250 40 30 Lead Screw (すべりねじ) 20 10 12 14 16 18 20 Lead Angle: リード角 (deg)

Backward Efficiency (逆効率) 100 % 90 Ball Screw (ボールねじ 80 70 Friction Coefficient (摩擦係数) 60 y = 0.150 40 30 Lead Screw (すべりねじ) u = 0.220 10 10 12 14 16 18 20 Lead Angle: リード角 (deg)

図 A-81:機械効率 Fig. A-81: Mechanical Efficiency

High mechanical efficiency

KSS Ball Screws are fitted with steel Balls, providing rolling contact between the Nut and Screw Shaft, allowing for mechanical efficiency of about 90% and reducing the required Torque to less than one-third that of conventional Lead Screws. The design of the KSS Ball Screws also allows linear motion to be converted into rotary motion easily (Fig. A-81).

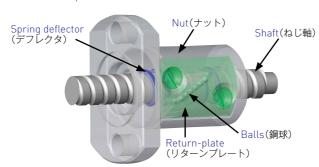
Axial play

With conventional Triangular and Trapezoidal Screw threads, reducing the Axial play increases the rotational Torque due to the sliding friction. KSS Ball Screws, on the other hand, are very easily rotated, even with no Axial play. The use of Double Nuts also provides increased Rigidity.

High precision

KSS Ball Screws are machined, assembled, and inspected using the technology of ultra-precision Lead Screw and Screw Gauge machining, under the temperature controlled room. High precision and accurate positioning ensure high reliability in use.

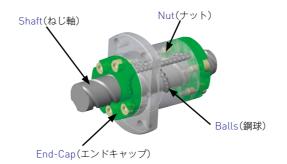
Long service life


The Ball Screw movement results in virtually no wear, as the rolling-contact design, combined with the use of carefully selected heat-treated materials, results in an extremely low friction. This is the reason that high precision can be kept over long period.

ボールねじの構造 Construction of Ball Screws

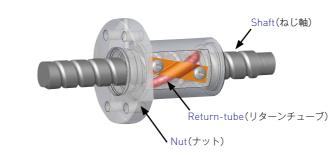
●リターンプレート式 Return-plate system

リターンプレート式は、ナット内部に設けられたコイルタイプのデフレク タによって鋼球が拾い上げられて、リターンプレートの溝に沿って循環し ます。リターンチューブ式と比較してナットの外径を小さくできるメリッ トがあります。構造上リターンプレートの部分が上になるように装置に取 付ければ、より円滑な回転が得られます。


The Return-plate system uses coil-type deflectors incorporated inside the Nut to pick up the steel Balls and circulate them via the Return-plate channel. This system has the advantage of allowing the use of a Nut that is smaller in diameter than those employed in Return-tube systems. In addition, the upward-angle installation of the Return-plate ensures even smoother rotation.

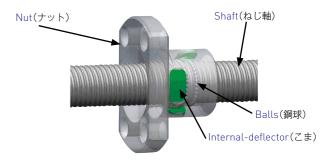
●エンドキャップ式 End-cap system

エンドキャップ式は、鋼球がねじ軸とナットの溝間を転がりながら進み、 ナット両端に取付けた循環部品(エンドキャップ)に設けた通路からナット に設けた貫通穴を通って、もとに戻る循環方式です。


The End-cap system is a recirculating system in which the Balls advance by rolling through the screw groove between the Nut and the Screw Shaft. The Balls are then returned via the holes in the Nut and the channels in the recirculating sections of the End-caps on either end of the Nut.

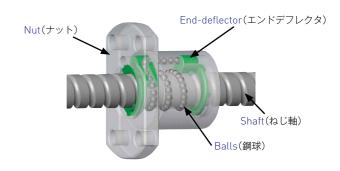
●リターンチューブ式 Return-tube system

ねじ軸とナットの間を転動している鋼球が、ナットに挿入したリターン チューブの先端によってねじ溝から取り出され、チューブの中を通って再 びねじ溝に戻る循環方式です。


In the Return-tube system, Balls rolling between the Nut and the Shaft are picked up from the screw groove by the end of the Returntube built into the Nut. Then, they flow back through the Return-tube to the screw groove.

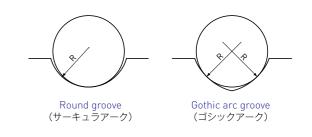
●乙ま式 Internal-deflector system

こま式は、可能な限りナット外径、及びナット長さをコンパクトにした軽量 なミニチュアボールねじです。ねじ軸及びナットに設けられたボール転動 溝を、鋼球が軸方向荷重を受けながら転がり運動をし、ナット内部に埋め込 まれたこまの溝に沿って隣の転動溝へ移り、再び負荷領域へ戻り、無限転が


The Internal-deflector system employs a lightweight Miniature Ball Screw, which enables the Nut diameter and length to be reduced to the smallest possible size. The Balls bear the load while rolling along the screw groove between the Shaft and the Nut. The Balls are continuously circulated, transferred to the adjacent groove in the screw via the Internal-deflector channel and then back to the loaded groove area.

●エンドデフレクタ式 End-deflector system

ナット内部または、外部に設けたエンドデフレクタからナット貫通穴を 通って元の溝に循環する方式です。リターンブレート式に比較してナット 外径がコンパクトに設計できます。中リードに最適の循環方式です。


The Balls are circulated from End-deflector incorporated inside the Nut or outside the Nut through the hole in the Nut and the channels in the recirculating sections. Ball Nut diameter can be smaller than Return-plate system. This is suitable for the middle lead Ball Screws.

●ねじ溝形状 Thread Groove profile

ボールねじには、1つの円弧で形成されるサーキュラアークと2つの円弧で形成されるゴシックアークの2種類があります。KSSボールねじは、ゴシッ クアークを採用しています。

Ball screws may have either a circular arc profile, formed of a single arc, or a gothic arc profile, formed from two arcs. KSS Ball Screws feature a gothic arc profile

A801

ボールねじの製作範囲

The range of manufacturing for Ball Screws

KSSボールねじの製作範囲は、ねじ軸呼び外径で ø1.8から φ16mmです。精度等級別のねじ軸製作限界長さの目安を 以下に記載いたします。

これらは、軸端形状や材質、シリーズによっても異なります ので、正確にはKSSまでお問い合わせください。

The range of manufacturing for KSS Ball Screws is from ϕ 1.8 to ϕ 16mm as Shaft nominal diameter. Maximum limit of overall lengths are shown below. Maximum limit of overall lengths will vary depending on the Shaft end configuration, materials and KSS series. Please inquire KSS for details.

●精密ボールねじの製作限界長さ(全長) Maximum limit of overall lengths for Precision Ball Screws Unit(単位):mm

Accuracy grade 精度等級 Shaft nominal diameter ねじ軸呼び外径	CO	C1	C3	C5
4	90	120	160	170
6	140	180	240	250
8	200	250	330	350
10	260	320	420	450
12	320	390	510	550
14	380	460	600	660
16	450	540	700	770

注1)製作限界長さを超える場合はKSSへお問い合わせください。

Note 1) If required length exceeds the number in table above, please ask KSS representative.

●転造ボールねじ(Ct7&Ct10)の製作限界長さ

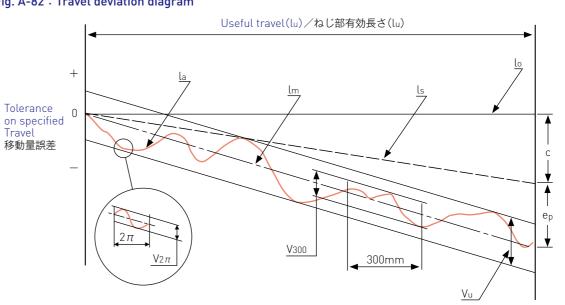
Maximum limit of overall lengths for Rolled Ball Screws (Ct7 & Ct10)

Unit(単位):mm

Shaft nominal diameter ねじ軸呼び外径	Maximum length 限界長さ
4	240
5	300
6	350
8	450
10	650
12	700
13	700
14	700
15	1000

注1)製作限界長さを超える場合はKSSへお問い合わせください。

Note 1) If required length exceeds the number in table above, please ask KSS representative.


Note 2) Maximum limit of overall length for Rolled Ball Screws includes 25mm of incomplete thread area at both end.

ボールねじのリード精度 Lead accuracy of Ball Screws

JIS B 1192-3によるボールねじのリード精度は、ナットの 有効移動量、またはねじ軸のねじ部有効長さに対する代表 移動量誤差及び変動と、ねじ部有効長さの間に任意にとっ た300mm及び1回転(2π rad)に対する変動で規定します。 精度等級別の各特性の許容値を表 A-83,84,85に示します。

図 A-82:移動量誤差線図 Fig. A-82: Travel deviation diagram Ball Screw lead accuracy conforming to JIS B 1192-3 is specified by the tolerance on specified travel over the Nut effective travel amount, or Screw Shaft useful travel, travel variation and travel variation within arbitrary 300mm, and 1 revolution (2π) rad) over the Screw Shaft useful travel.

Tolerance of each accuracy grades are shown in the Table A-83, 84, 85.

呼び移動量(lo) :呼びリードにしたがって任意の回転数、回転したときの軸方向移動量

基準リード(Phs) 温度上昇や荷重によって発生する変形量を予測し、呼びリードに対して若干の補正を加えたリード

代表移動量の目標値(c):基準移動量をあらかじめプラスあるいはマイナスにしておく場合の目標値

基準移動量(ls) 基準リードにしたがって任意の回転数を回転したときの移動量 任意のねじ軸回転角に対するナットの実際の軸方向移動量 実移動量(la)

代表移動量(lm) 実移動量の傾向を代表する直線。ボールねじの有効移動量、またはねじ部有効長さに対する実移動量を示す

曲線から最小二乗法、またはそれに類する近似法により求める。

代表移動量誤差(e_s) :ナットの有効移動量またはねじ軸のねじ部有効長さに対応する代表移動量と基準移動量との差

変動(Vu) 代表移動量に平行に引いた2線で挟んだ実移動曲線の最大幅

: ねじ部有効長さの間に任意にとった300mmに対する実移動曲線の最大幅 変動(V300)

: ねじ部有効長さの間にとった任意の1回転(2π rad)に対する実移動曲線の最大幅 変動(V_{2π})

Nominal travel(l₀) Travel in axial direction when rotated arbitrary number of revolution according to the Nominal lead

Specified Lead (Phs) : Lead given some amount of correction to the Nominal lead in order to compensate

the deformation generated due to the temperature rise or the load.

Travel compensation(c) Difference between the Specified travel and the Nominal travel within the valid travel. Specified travel(ls) Travel in axial direction when rotated arbitrary number of revolution according to

the Specified lead.

Actual travel(la) : Actual travel of Ball Nut in axial direction in respect to an arbitrary angle of rotation

of Ball Screw Shaft.

Actual mean travel(lm) Straight line which represents the tendency of Actual travel. It is obtained by the

least square method or a simple and appropriate approximation method from the curve indicating the Valid travel of Ball Nut.

Tolerance on specified travel(e_p) Difference between the Actual mean travel and the Specified travel corresponding

to the Valid travel of Ball Nut or the Useful travel of Ball Screw Shaft.

Maximum width of the Actual travel curve between the two straight lines put in

parallel to the Actual mean travel line, that corresponding to Valid travel of Ball Nut or

Useful travel of Ball Screw Shaft.

Travel variation (V₃₀₀) : Maximum width of the Actual travel curve between the two straight lines put in parallel to the Actual mean travel line, that corresponding to arbitrary 300mm taken

within Useful travel of Ball Screw Shaft.

Travel variation $(V_{2\pi})$ Maximum width of the Actual travel curve between the two straight lines put in parallel to the Actual mean travel line, that corresponding to arbitrary one revolution

 $(2\pi \text{ rad})$ within Useful travel of Ball Screw Shaft.

Travel variation (V_u)

A803

注2) 転造ボールねじの限界長さは、両端25mmずつの不完全ねじ部を含んだ値です。

表 A-83: 精密ボールねじ(位置決め用: C系列)の代表移動量誤差(生e_o)と変動(Vu)の許容値

Table A-83: Tolerance on specified travel ($\pm e_0$) and

permissible travel variation (Vu) of precision Ball Screws (for positioning: C series)

Unit(単位): µ m

Accuracy Grade 精度等級		C0		C1		C3		C5		
	Over を超え	Up to 以下	±eρ	Vu	±eρ	Vu	±e,	Vu	±e,	Vu
	_	100	3	3	3.5	5	8	8	18	18
	100	200	3.5	3	4.5	5	10	8	20	18
Useful travel (mm)	200	315	4	3.5	6	5	12	8	23	18
ねじ部有効長さ (mm)	315	400	5	3.5	7	5	13	10	25	20
	400	500	6	4	8	5	15	10	27	20
	500	630	6	4	9	6	16	12	30	23
	630	800	7	5	10	7	18	13	35	25
	800	1000	8	6	11	8	21	15	40	27

表 A-84:精密ボールねじ(位置決め用: C系列)における300mm及び1回転あたりの変動(V_{2n})の許容値

Table A-84: Permissible travel variation V_{300} , $V_{2\pi}$ (for positioning: C series)

Unit(単位): µ m

Accuracy grade 精度等級	CO		C1		C3		C5	
ltem 項目	V 300	V 2π						
Permissible value 許容値	3.5	3	5	4	8	6	18	8

表 A-85: Ct系列(7,10級)の300mmに対する変動(V300)

Table A-85: Permissible travel variation V₃₀₀ for Ct series (7,10 grade)

Unit(単位): μ m

Accuracy grade 精度等級	Ct7	Ct10
V ₃₀₀	52	210

Ct系列(7,10級)の代表移動量誤差は次式で計算します。 Tolerance on specified travel(ep) for Ct series is calculated as follows.

$$e_p = \pm \frac{lu}{300} \times V_{300}$$

lu:ねじ部有効長さ(mm) Useful travel(mm)

ボールねじの日本工業規格(JIS B1192)は、ISOとの整合性 を図る目的で1997年、2013年、及び2018年に改訂されてき ています。

精度等級に関しては、C系列(従来のJIS規格 C0.1.3.5)とCp、 Ct系列(ISOとの整合性を図った規格)が制定されています。 KSSでは、JIS B 1192-3(2018)に準拠し、0,1,3,5級に関して は、C系列を、7.10級に関しては、Cp、Ct系列を採用していま す。

Japan Industrial Standard of Ball Screw(JIS B1192) was revised in 1997, 2013 and 2018 in order to correspond to ISO.

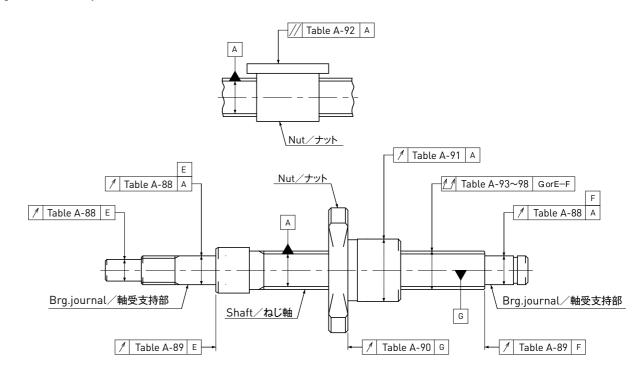
Regarding accuracy grade, C series (current JIS CO, 1, 3, 5) and Cp, Ct series (standard corresponding to ISO) are established. KSS conforms to JIS B 1192-3 (2018) and adopts C series for 0,1,3,5 grade, Cp, Ct series for 7,10 grade.

ボールねじの取付け部精度

Ball Screw Run-out and location tolerances

ボールねじの日本工業規格(JIS B1192)は、ISOとの整合性 を図る目的で1997年、2013年、及び2018年に改訂されてき

精度等級に関しては、C系列(従来のJIS規格 C0,1,3,5)とCp、 Ct系列(ISOとの整合性を図った規格)が制定され、取付け部 精度の表記法と規格が、C系列とCp,Ct系列で若干異なって いますが、KSSでは、下図(図 A-86)の表記と規格値(C系列) で統一し、7級、10級に関しては、Cp,Ct系列の規格を参考に 運用しています。


また、2018年の改訂では、直角度の表記が「端面または取付 け面の円周振れ」という用語に変更され、幾何公差記号も ⊥ から / に改められました。

Japan Industrial Standard of Ball Screw(JIS B1192) was revised in 1997, 2013 and 2018 in order to correspond to ISO. Regarding accuracy grade, C series (current JIS CO, 1, 3, 5) and Cp, Ct series (standard corresponding to ISO) are established. There are some differences between C series and Cp, Ct series in notation and tolerances for accuracy of Ball Screw mounting section. KSS uses notation in Fig. A-86 below and standard tolerance value, which conforms to C series standard, and KSS refers to Cp, Ct series standard in case of 7 and 10 grade. Moreover, in the revision of 2018, the notation of perpendicularity changed to "run-out of the mounting surface or end face", and geometric tolerance symbols

changed from \perp to \nearrow .

図 A-86:取付け部精度記入例

Fig. A-86: Description of Run-out and location tolerances for Ball Screws

表 A-88: ねじ軸のねじ溝面に対する支持部外径の半径方向円周振れ 及びねじ軸の支持部軸線に対する部品取付け部の半径方向円周振れ

Table A-88: Radial Run-out of Bearing seat related to the centerline of screw groove and Radial Run-out of journal diameter related to the Bearing seat

Unit(単位): μ m

Shaft nominal diameter (mm) ねじ軸呼び外径 (mm)		Permissible deviation of Radial Run-out 振れ公差(最大)						
Over を超え	Up to 以下	C0	C1	C3	C5	C7	C10	
-	8	3	5	8	10	14	40	
8	12	4	5	8	11	14	40	
12	20	4	6	9	12	14	40	

この項目の測定には、ねじ軸軸線の全振れの影響が含まれるので、その補正が必要となります。その補正方法としては、ねじ軸全長と、支点と測定点間の距離 (L_1,L_2) との比によって(図 A-87参照)、ページ A809~A811の表 A-93~98のねじ軸軸線の全振れ公差から補正値(下式参照)を求め、表 A-88の公差に加えて適用します。

This measurement item is affected by Total Run-out of the Screw Shaft, and so it must be corrected as follows. Find the corrected value from the Total Run-out tolerances given in Tables A-93 \sim 98 on page A809 \sim A811 using the ratio of the total Shaft length to the distance between the supporting point and the measuring point (L₁,L₂) (see Fig. A-87), and add the values obtained to the tolerance given in Table A-88.

図 A-87: 円周振れの補正

Fig. A-87: Compensation of Radial Run-out

円周振れ補正値=
$$\frac{$$
全振れ公差(表 A-93~98)} 全長 \times 測定間距離(L_1 または L_2

L₁,L₂: 支点と測定間の距離(mm)

Compensation Value of Run-out =
$$\frac{\text{Tolerance of total Run-out (Table A-93~98)}}{\text{Total shaft length}} \times (L_1 \text{ or } L_2)$$

 L_1 , L_2 : Distance btw supporting pt & measuring pt(mm)

表 A-89:ねじ軸の支持部軸線に対する支持部端面の円周振れ Table A-89:Axial Run-out (Perpendicularity) of Shaft(Bearing) face related to the centerline of the Bearing seat

Unit(単位): μ m

Shaft nominal diameter (mm) ねじ軸呼び外径 (mm)		Permissible deviations of Axial Run-out(Perpendicularity) 円周振れ公差(最大)						
Over を超え	Up to 以下	C0	C1	C3	C5	C7	C10	
_	8	2	3	4	5	7	10	
8	12	2	3	4	5	7	10	
12	20	2	3	4	5	7	10	

表 A-90: ねじ軸の軸線に対するナット基準端面またはフランジ取付け面の円周振れ

Table A-90: Axial Run-out (Perpendicularity) of Ball Nut location face related to the centerline of Screw Shaft Unit(単位): μm

Nut outside diameter (mm) ナット外径		Permissible deviations of Axial Run-out(Perpendicularity) 円周振れ公差(最大)						
Over を超え	Up to 以下	C0	C1	C3	C5	C7	C10	
_	20	5	6	8	10	14	20	
20	32	5	6	8	10	14	20	
32	50	6	7	8	11	18	30	

表 A-91: ねじ軸の軸線に対するナット外周面(円筒形の場合)の半径方向円周振れ

Table A-91: Radial Run-out of Ball Nut location diameter related to the centerline of Screw Shaft

Unit(単位): μ m

Nut outside diameter (mm) ナット外径		Permissible deviations of Radial Run-out 振れ公差(最大)						
Over を超え	Up to 以下	C0	C1	C3	C5	C7	C10	
_	20	5	6	9	12	20	40	
20	32	6	7	10	12	20	40	
32	50	7	8	12	15	30	60	

表 A-92: ねじ軸の軸線に対するナット外周面(平面形取付けの場合)の平行度

Table A-92: Parallelism of rectangular Ball Nut related to the centerline of Screw Shaft

Unit(単位): μ m

Mounting length (mm) 取付け基準長さ(mm)		Permissible deviations of Parallelism 平行度公差(最大)						
Over を超え	Up to 以下	C0	C0 C1 C3			C7	C10	
_	50	5	6	8	10	17	30	
50	100	7	8	10	13	17	30	

表 A-93: ねじ軸軸線の半径方向全振れ(C0)

Table A-93: Total Run-out in radial direction of Screw Shaft related to the centerline of Screw Shaft (C0)

		oci en enarri etatea te ti		Unit(単位):mm		
			Shaft nominal diameter ねじ軸呼び外径			
	Over / を超え	-	8	12		
Shaft total length ねじ軸全長	Up to /以下	8	12	20		
Over を超え	Up to 以下	Permissible deviations of total Run-out in radial direction 振れ公差(最大)				
_	125	0.015	0.015	0.015		
125	200	0.025	0.020	0.020		
200	315	0.035	0.025	0.020		
315	400	-	0.035	0.025		
400	500	_	0.045	0.035		

0.050

0.040

0.050

0.065

表 A-94: ねじ軸軸線の半径方向全振れ(C1)

1000

630

800

Table A-94: Total Run-out in radial direction of Screw Shaft related to the centerline of Screw Shaft(C1)

				Unit(単位):mm				
			Shaft nominal diameter ねじ軸呼び外径					
	Over / を超え	-	8	12				
Shaft total length ねじ軸全長	Up to / 以下	8	12	20				
Over を超え	Up to 以下	Permissible deviations of total Run-out in radial direction 振れ公差(最大)						
-	125	0.020	0.020	0.015				
125	200	0.030	0.025	0.020				
200	315	0.040	0.030	0.025				
315	400	0.045	0.040	0.030				
400	500	_	0.050	0.040				
500	630	-	0.060	0.045				
630	800	_	_	0.060				
800	1000	-	-	0.075				

表 A-95: ねじ軸軸線の半径方向全振れ(C3)

Table A-95: Total Run-out in radial direction of Screw Shaft related to the centerline of Screw Shaft (C3)

				UIII(羊位)·IIIII
		Shaft nominal diameter ねじ軸呼び外径		
Over / を超え		-	8	12
Shaft total length ねじ軸全長	Up to /以下	8	12	20
Over を超え	Up to 以下	Permissible devi	ations of total Run-out ir 振れ公差(最大)	n radial direction
-	125	0.025	0.025	0.020
125	200	0.035	0.035	0.025
200	315	0.050	0.040	0.030
315	400	0.060	0.050	0.040
400	500	_	0.065	0.050
500	630	_	0.070	0.055
630	800	_	_	0.070
800	1000	-	_	0.095

表 A-96: ねじ軸軸線の半径方向全振れ(C5)

Table A-96: Total Run-out in radial direction of Screw Shaft related to the centerline of Screw Shaft (C5)

			Shaft nominal diameter ねじ軸呼び外径	Unii(年业)·mir
Over / を超え		_	8	12
Shaft total length ねじ軸全長	Up to /以下	8	12	20
Over を超え	Up to 以下	Permissible deviations of total Run-out in radial directi 振れ公差(最大)		
-	125	0.035	0.035	0.035
125	200	0.050	0.040	0.040
200	315	0.065	0.055	0.045
315	400	0.075	0.065	0.055
400	500	_	0.080	0.060
500	630	_	0.090	0.075
630	800	_	_	0.090
800	1000	_	_	0.120

表 A-97: ねじ軸軸線の半径方向全振れ(C7)

Table A-97: Total Run-out in radial direction of Screw Shaft related to the centerline of Screw Shaft (C7)

rabte /t // - rotat itali		oc. on onarr retared to the		Unit(単位):mm		
			Shaft nominal diameter ねじ軸呼び外径			
	Over / を超え	_	8	12		
Shaft total length ねじ軸全長	Up to / 以下	8	12	20		
Over を超え	Up to 以下	Permissible dev	iations of total Run-out in 振れ公差(最大)	n radial direction		
_	125	0.060	0.055	0.055		
125	200	0.075	0.065	0.060		
200	315	0.100	0.080	0.070		
315	400	_	0.100	0.080		
400	500	_	0.120	0.095		
500	630	_	0.150	0.110		
630	800	_	_	0.140		

表 A-98: ねじ軸軸線の半径方向全振れ(C10)

1000

800

Table A-98: Total Run-out in radial direction of Screw Shaft related to the centerline of Screw Shaft (C10)

1	Init	(単位)	١.	mr
·	mı	(里1)/	Ι.	m

0.170

				Unit(単位):mm
			Shaft nominal diameter ねじ軸呼び外径	
	Over / を超え	-	8	12
Shaft total length ねじ軸全長	Up to /以下	8	12	20
Over を超え	Up to 以下	Permissible deviations of total Run-out in radial direction 振れ公差(最大)		
-	125	0.100	0.095	0.090
125	200	0.140	0.120	0.110
200	315	0.210	0.160	0.130
315	400	-	0.210	0.160
400	500	_	0.270	0.200
500	630	-	0.350	0.250
630	800	_	0.460	0.320
800	1000	-		0.420

注)Ct7, Ct10の場合、JIS B1192-2013に従い細長比による全振れ規格(下表) を採用する場合もあります。

Note) In case of Ct7, Ct10 grade, KSS may use the standard of Total Run-out based on slenderness ratio, which conforms to JIS B1192-2013.

Slenderness ratio 細長比		Total Run-out 全振れ		
Over / を超え	Up to / 以下	Ct7	Ct10	
_	40	0.080	0.160	
40	60	0.120	0.240	
60	80	0.200	0.400	
80	100	0.320	0.640	

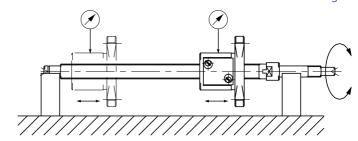
細長比 / Slenderness ratio= lu/do

lu: ねじ部有効長さ / Useful travel(mm)

do: ねじ軸呼び外径 / Nominal diametor of Ball Screw(mm)

ボールねじの取付け部精度測定方法

Measuring method of Ball Screw Run-out and location tolerances

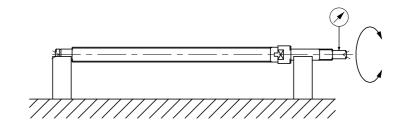

●ねじ軸のねじ溝面に対する支持部外径の半径方向円周振れ (表 A-88)

ねじ軸両端をVブロックで支持し、ねじ軸を回転させなが ら、ナット外周面に当てたダイヤルゲージの目盛を読みと ります。測定は支持部近傍の2か所で行います。

なお支持部外径に直接ダイヤルゲージを当てて測定する 場合は、両センタ穴支持にて行います。

Radial Run-out of Bearing seat related to the centerline of screw groove (Table A-88)

Place the Ball Screw in identical V-blocks at both Bearing seat. Place the dial gauge perpendicular to the Nut cylindrical surface. Rotate Screw Shaft slowly and record the dial gauge readings. Measurement should be done at near both ends of threaded part. Some cases, this measurement will be done by both centerhole support, and directly measured on Bearing seat.



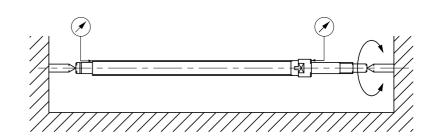
●ねじ軸の支持部軸線に対する部品取付け部の半径方向 円周振れ(表 A-88)

ねじ軸両端をVブロックで支持し、ねじ軸を回転させなが ら、部品取付け部に当てたダイヤルゲージの目盛を読みと ります。

Radial Run-out of journal diameter related to the Bearing seat (Table A-88)

Place the Ball Screw in identical V-blocks at both Bearing seats. Place the dial gauge perpendicular to the journal cylindrical surface. Rotate the Screw Shaft slowly and record the dial gauge readings.

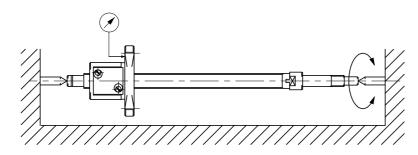
●ねじ軸の支持部軸線に対する支持部端面の円周振れ (表 A-89)


ねじ軸両端を両センタ穴で支持し、ねじ軸を回転させなが ら、支持部端面に当てたダイヤルゲージの目盛を読みとり ます。

**図面表記は支持部外周面基準ですが、支持部外周面は、 センタ穴基準で加工しているため、支持部外周面にVブ ロックで支持したことと同等となります。

Axial Run-out (Perpendicularity) of shaft(Bearing) face related to the centerline of the Bearing seat (Table A-89)

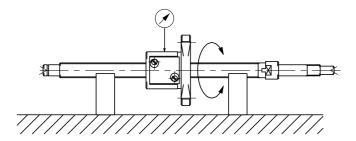
Support a Screw Shaft at both centers. Place the dial gauge perpendicular to the end face of the journal. Rotate the Screw Shaft slowly and record the dial gauge readings.


**This method is equivalent to the one, which is supported at both Bearing seats, because Bearing seats are ground related to both centers.

ねじ軸両端を両センタ穴で支持し、軸とナットを共に回転 させながら、ナットフランジ端面に当てたダイヤルゲージ の目盛を読みとります。

Axial Run-out (Perpendicularity) of Ball Nut location face related to the centerline of Screw Shaft (Table A-90)

Support the Ball Screw at both centers. Place the dial gauge perpendicular to the flange face. Rotate the Screw Shaft with Ball Nut slowly and record the dial gauge readings. Secure the Ball Nut against rotation on the Screw Shaft.

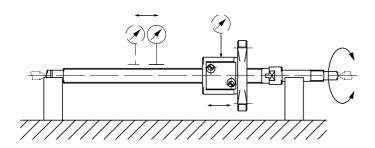


●ねじ軸の軸線に対するナット外周面の半径方向円周振れ (表 A-91)

ねじ軸のナット近傍の外周面をVブロックで支持し、ナットを回転させながら、ナット外周面に当てたダイヤルゲージの目盛を読みとります。

Radial Run-out of Ball Nut location diameter related to the centerline of Screw Shaft (Table A-91)

Place the Ball Screw on V-blocks at adjacent sides of the Ball Nut. Place the dial gauge perpendicular to the cylindrical surface of Ball Nut. Secure the Screw Shaft against rotation of Ball Nut. Rotate Ball Nut slowly and record the dial gauge readings.



●ねじ軸の軸線の半径方向全振れ(表 A-93~98)

ねじ軸両端を両センタ穴またはVブロックで支持し、ねじ軸を回転させながら、ねじ軸外周面またはナット外周面に当てたダイヤルゲージの目盛を読みとります。測定は全域にわたり、数か所行います。

■Total Run-out in radial direction of Screw Shaft related to the centerline of Screw Shaft (Table A-93~98)

Place the Ball Screw in identical V-blocks at both Bearing seats, or support the Ball Screw at both centers. Place the dial gauge with measuring shoe at the several points over the full thread length. Rotate the Screw Shaft slowly and record the dial gauge readings. Maximum value of measurement should be the Total Run-out.

材質と熱処理、硬さ

Material and Heat treatment, Surface hardness

KSSボールねじの標準材質、熱処理と硬さは、表 A-99, 100 に示すとおりです。なお、シリーズや型式により多少異なる場合がありますので、KSS提示の仕様図を参照ください。

Standard material of KSS Ball Screws, Heat treatment and Surface hardness are shown in table A-99, 100. However, they vary depending on series or model number. Please refer to KSS drawings.

表 A-99: 通常品の材質と熱処理、硬さ

Table A-99: Material, Heat treatment & Surface hardness for regular items

	Material	Heat treatment	Surface hardness
	材質	熱処理	表面硬度
Screw Shaft ねじ軸	SCM415 (JIS G 4105)	Carburizing and quenching 浸炭焼入	HRC 58-62
	S55C (JIS G 4051)	Induction hardening 高周波焼き入れ	HRC min.58 HRC.58以上
Nut	SCM415	Carburizing and quenching	HRC 58-62
ナット	(JIS G 4105)	浸炭焼入	

注1)表中に示す硬度は、ボールねじ部の表面硬度を表します。

注2)S55Cは精密転造ボールねじに適用します。

Note 1) Hardness on table shows surface hardness of thread part.

Note 2)S55C is applicable for Precision Rolled Ball Screws.

表 A-100:ステンレス品の材質と熱処理、硬さ

Table A-100: Material, Heat treatment & Surface hardness for stainless steel items

	Material	Heat treatment	Surface hardness
	材質	熱処理	表面硬度
Screw Shaft	SUS440C	Quenching and tempering	HRC min.55
ねじ軸	(JIS G 4303)	焼入、焼もどし	HRC 55以上
Nut	SUS440C	Quenching and tempering	HRC min.55
ナット	(JIS G 4303)	焼入、焼もどし	HRC 55以上

注)表中に示す硬度は、ボールねじ部の表面硬度を表します。

Note) Hardness on table shows surface hardness of thread part.

A813

echnical descriptioールねじ技術解説

許容アキシアル荷重 Permissible Axial load

ねじ軸には、できる限り引張り荷重が作用するような使い 方をおすすめします。しかし使用条件によっては、圧縮荷重 が作用する場合があり、このときはねじ軸に座屈が生じな いよう検討する必要があります。

また、特に取付け間距離が接近している場合は、取付け方法に関係なく許容引張、または圧縮荷重や基本静定格荷重Coaの制約を受けます。

座屈荷重、許容引張、許容圧縮荷重については、以下の計算 式で算出できます。 It is recommended that Ball Screw Shafts be used almost exclusively under tension load conditions. However, in some applications, compression loads may exist, and under such conditions it must be checked that Shaft buckling will not occur. Also, when the mounting span distance is short, there is a restriction on the permissible tension or compression load and the Basic Static Load Rating Coa unrelated to mounting.

Buckling load, permissible tension and permissible compression load can be calculated below.

●座屈に対する許容圧縮荷重の計算式

Permissible compression load calculation for buckling

$$P = \alpha \times \frac{n\pi^2 E \cdot I}{L^2}$$
 N オイラーの式(Formula for Oiler)

a:安全率(Safety Factor) 0.5

E:ヤング率(Young's modulus)

 $2.08 \times 10^{5} \text{ N/mm}^{2} (\text{MPa})$

I: ねじ軸断面の最小2次モーメント(Screw Shaft minimum moment of inertia of area)

$$I = \frac{\pi}{64} d^4 \text{ mm}^4$$

d:ねじ軸谷径(Screw Shaft Root diameter)

mm

L:取付け間距離(Mounting span distance)

mm

n:ボールねじの取付け方法によって定まる係数(Factor for Ball Screw mounting method)

支持一支持(Supported-Supported) n = 1 固定一支持(Fixed-Supported) n = 2 固定一固定(Fixed-Fixed) n = 4 固定一自由(Fixed-Free) n = 1/4

●ねじ軸の降伏応力に対する許容引張、圧縮荷重の計算式

Permissible tension, compression load calculation for Screw Shaft yield stress

$$P = \sigma \times A$$
 N

σ:許容応力(Permissible stress)

98N/mm² (MPa)

A: ねじ軸の最小断面積(Screw Shaft minimum section area)

$$A = \frac{\pi}{4} d^2 mm^2$$

d:ねじ軸谷径(Screw Shaft Root diameter)

mm

許容回転数

Permissible speed

回転を伴うねじ軸は、取付方法によって一定の限界となる 回転数が決められており、この値に近くなると共振を起こ し、運転不能となることがあります。

またボールねじは、取付方法に関係なく、循環部の破損をまねく限界回転数が存在します。

For Screw Shaft rotation, the mounting method determines the established rotation limits. When this value is approached, resonance phenomenon will occur, and operation becomes impossible. There is also rotation limit which causes damages to recirculating parts. This limit is unrelated to mounting methods.

●危険速度に対する許容回転数の計算式

Permissible speed calculation for critical speed

$$N = \beta \times \frac{60 \cdot \lambda^{2}}{2\pi} \times \sqrt{\frac{E \cdot I \cdot g}{\gamma \cdot A \cdot L^{4}}} \quad min^{-1}$$

β: 安全係数(Safety Factor) 0.8

E:ヤング率(Young's modulus)

 $2.08 \times 10^{5} \text{ N/mm}^{2} \text{ (MPa)}$

I: ねじ軸断面の最小2次モーメント(Screw Shaft minimum moment of inertia of area)

$$I = \frac{\pi}{64} d^4 \text{ mm}^4$$

d: ねじ軸谷径(Screw Shaft Root diameter)

mm

g:重力加速度(Gravity acceleration)

 9.8×10^3 mm/sec²

γ: 材料の比重(Material specific gravity)

 $7,850 \text{kg/m}^3 (7.7 \times 10^{-5} \text{ N/mm}^3)$

L:取付間距離(Mounting span distance)

mm

A: ねじ軸の最小断面積(Screw Shaft minimum section area)

$$A = \frac{\pi}{4} d^2 mm^2$$

λ:ボールねじの取付け方法によって定まる係数(Factor for Ball Screw mounting method)

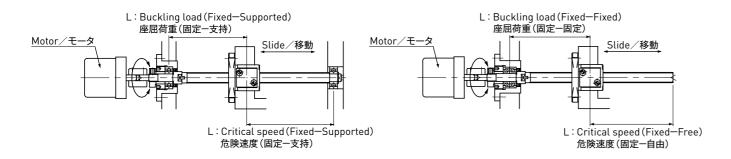
支持一支持(Supported-Supported) $\lambda = \pi$ 固定一支持(Fixed-Supported) $\lambda = 3.927$ 固定一固定(Fixed-Fixed) $\lambda = 4.730$ 固定一自由(Fixed-Free) $\lambda = 1.875$

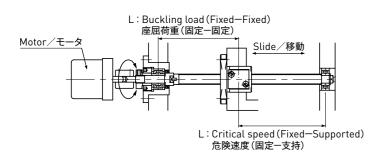
●循環部の破損に対する限界回転数

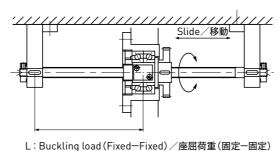
循環部の破損に対する限界回転数について、一般的にはボールねじのボール速度dn値(ねじ軸呼び外径×回転数)によって上限を設ける場合がほとんどですが、KSSボールねじのようなミニチュアボールねじには、dn値の概念が当てはまりません。KSSボールねじの場合、循環部破損による限界回転数は、3,500~4,000min⁻¹程度と考えてください。この値は、使用条件や環境によっても異なりますので、詳細はKSSまでお問い合わせください。

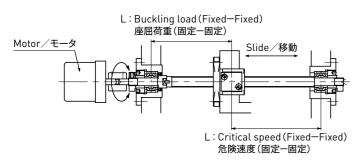
また、高速回転に加え、高加減速で運転した場合にも循環部の破損の危険性が高くなります。高加減速運転での循環部破損の目安は、内部仕様によっても異なりますので、KSSまでお問合せください。

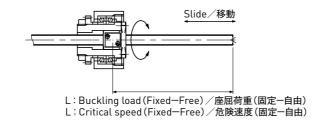
Rotational speed limit for damage on recirculating parts


Generally, regarding critical speed for damage on recirculating parts, limitation is established by dn value, which is multiplied Shaft nominal diameter of revolution, but dn value cannot be applied to Miniature Ball Screws. For KSS Ball Screws, please consider rotational speed limit by damage on recirculating parts as 3,500 to 4,000min⁻¹. This value varies depending on operating conditions and environment. Please inquire KSS for details. Moreover, possibilities of breakage of recirculating parts will be increased when using in high acceleration / deceleration.


Estimate criterion of the breakage in the recirculating section is depending on the internal specification of the Ball Screw, please ask KSS for more detail.


ボールねじの取付け方法 **Ball Screw mounting methods**


ボールねじの代表的な取付け方法を図 A-101に示します。 取付け方法は、座屈に対する許容アキシアル荷重、および危 険速度に対する許容回転数に影響しますので、強度や回転 数の検討の際にご利用ください。


Typical Ball Screw's mounting methods are shown in Fig. A-101. Mounting configuration affects permissible Axial load in relation to buckling, as well as permissible speed in relation to critical speed. Please refer to below when studying strength and speed.

L:Critical speed (Fixed-Fixed)/危険速度(固定-固定)

図 A-101:ボールねじの取付け方法 Fig. A-101: Ball Screw mounting methods

軸方向すきまと予圧 Axial play and Preload

一般に通常のシングルナットのボールねじでは、ねじ軸と ナットの間にわずかな軸方向すきまが存在します。した がって、シングルナットボールねじに軸方向荷重が作用す ると、上述の軸方向すきまと軸方向荷重による弾性変位量 の和が、バックラッシュとして発生します。このバックラッ シュを無くすために、ボールねじでは、軸方向すきまを負の 状態にする、すなわち、あらかじめねじ軸とナットの間の ボールに弾性変形を与えておく「予圧」という方法が採られ ます。

For standard Single Nut Ball Screws under normal conditions, a slight Axial play exists between the Screw Shaft and Nut. Consequently, when Axial loads act on Single Nut Ball Screws, total amount of Axial play and Elastic displacement due to Axial load becomes backlash. In order to prevent this backlash in Ball Screws, the Axial play can be reduced to a negative value. That is what we call "Preload", which is the method of causing Elastic deformation to the Balls between the Screw Shaft and Nut in advance.

●軸方向すきま

KSSボールねじのすきま記号と軸方向すきまの許容値を 表 A-102に示します。

また、ボールねじの精度等級とすきま記号の組み合わせは、 表 A-103に示すとおりです。

Axial play

Symbol and permissible value for Axial play are shown in Table A-102.

Combination of accuracy grade and symbol are shown in Table A-103.

表 A-102: すきま記号と軸方向すきまの許容値

Table A-102: Symbol and permissible value for Axial play

Unit(単位):mm

Symbol すきま記号	0	02	05	20	50
Axial play 軸方向すきま	0 (Preloading) 0 (予圧)	0.002 max. 0.002以下	0.005 max. 0.005以下	0.02 max. 0.02以下	0.05 max. 0.05以下

表 A-103: 精度等級とすきま記号の組み合わせ

Table A-103: Combination of accuracy grade and Axial play

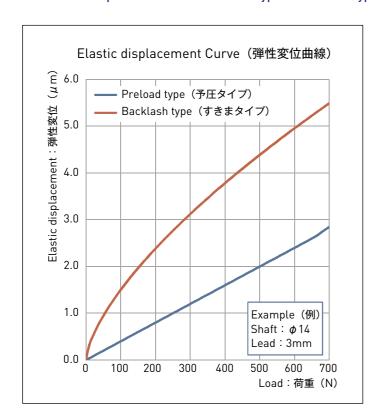
Symbol すきま記号 Accuracy grade 精度等級	0	02	05	20	50
CO	C0-0	_	_	_	_
C1	C1-0	C1-02	_	_	_
C3	C3-0	C3-02	C3-05	C3-20	C3-50
C5	_	-	C5-05	C5-20	C5-50
C7	_	_	_	C7-20	C7-50
C10	_	_	_	C10-20	C10-50

注)上記以外の組み合わせをご要望の場合は、KSSへお問い合わせください。

Note) When combinations other than the above are requested, please inquire KSS.

●予圧の効果

予圧によって、ボールねじは軸方向すきまを無くせるばか りでなく、軸方向荷重による軸方向変位量を減少させ、剛 性を向上させる効果があります。


図 A-104は、すきま仕様のボールねじと、予圧(すきまゼ 口)仕様のボールねじについて、軸方向荷重による弾性変 位量の違い(理論値)を示したものです。予圧により弾性変 位量が減少(剛性が向上)していることがわかります。

Preload effect

Preload is not only used for removing Axial play, it also has the effect of reducing the amount of Axial displacement due to Axial load, and improving the Rigidity in Ball Screws. Fig. A-104 shows the difference of the amount of Elastic displacement (theoretical value) regarding Ball Screw with Axial play and Ball Screw with Preload under the Axial load.

図 A-104: すきま品と予圧品の弾性変位曲線

Fig. A-104: Elastic displacement curve comparison between Backlash type and Preload type

●適正予圧量

予圧量は必要とする剛性、または許容できるバックラッ シュによって決めるべきですが、予圧を与えることにより、 以下の項目が懸念されます。

- 1)動トルクの増大
- 2)発熱、温度上昇による位置決め精度の低下

そのため、予圧量はできる限り低く設定することが望まし いと言えます。

Proper amount of Preload

Although the amount of Preload should be determined by the required Rigidity and the permissible amount of backlash, when setting Preload, there are some concerning issues as follows.

- 1) Increased Dynamic Drag Torque
- 2) Heat generation.
- lowering of positioning accuracy,
- due to the temperature rise.
- 3) Shortened life

Therefore, it is advisable to establish the amount of Preload at the lowest possible limits.

●予圧の方法

一般にボールねじの予圧は、2個のナットの間にスペーサ (間座)を挿入したダブルナット予圧という方法が採用さ れています。KSSボールねじでは、ミニチュアボールねじ の特長を活かし、ねじ軸とナットの空間よりもわずかに大 きいボールを挿入する「オーバーサイズボール予圧」を採 用しています。これにより1個のナットでも軸方向すきま をゼロにすることができ、コンパクト化を維持することが 可能です。またスペーサボール(予圧を与えるオーバーサ イズボールよりわずかに小さいボール)を1個おきに使用 することで、作動性能を低下させることもありません。

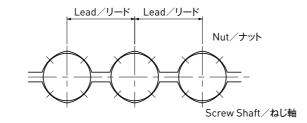
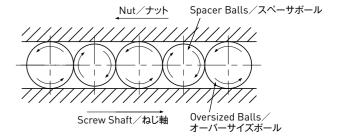
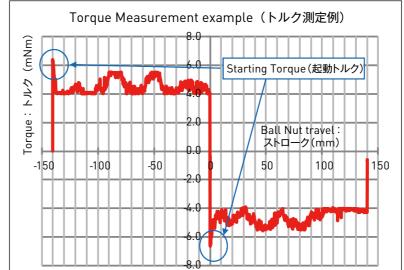


図 A-105: オーバーサイズボールによる予圧状態 Fig. A-105: Preload by oversized Balls

Preload methods

Generally, a method of Double Nut Preload by inserting a spacer between two Nuts is adopted. KSS Ball Screw adopts [Oversized Ball Preload] by inserting Balls slightly bigger than space between Screw Shaft and Nut. As a result, it can eliminate Axial play even with a Single Nut and it is possible to maintain compact. Moreover, operating performance will never be deteriorated by using spacer Balls (Balls with slightly smaller diameter than those of the oversize Balls) alternatively with oversize Balls.




図 A-106: スペーサボール Fig. A-106: Spacer Balls

●予圧の管理方法

ボールねじの予圧量を直接測定して管理することは困難 です。そのためボールねじの予圧は、予圧動トルクに換算 し、その予圧動トルクを測定することで管理しています。 予圧動トルク値に関しては、仕様図に記載して、お客様と 取り決めを行います。予圧動トルクは、あくまでも予圧量 (軸方向すきまがゼロであること)を管理するため、一定の 測定条件のもとで測定します。そのため潤滑条件や使用条 件が異なる実機での動トルク値とは違いが生じますので ご注意ください。また、起動トルク(ボールねじを駆動させ る際のトルク)は、動トルクより若干大きくなりますので、 ご了承ください。

Preload control

It is difficult to control Preload amount by measuring. Therefore, Preload of Ball Screw is controlled by measuring Preload Dynamic Drag Torque, which is converted from Preload amount. Amount of Preload Dynamic Drag Torque is decided with customers by specification drawing. Preload Dynamic Drag Torque is measured under specific condition to verify the amount of Axial play is 0. Dynamic Drag Torque installed actual machine will vary depending on lubricating condition, load condition and so on. Starting torque (Torque for starting Ball Screw) is slightly bigger than Dynamic Drag Torque.

*説明用のため実際のトルク変動より誇張しています。 *Torque wave in this diagram is exaggerated for explanation.

図 A-107:動トルク測定例

Fig. A-107: Dynamic Drag Torpue measurement

送りねじ軸系の剛性 Rigidity in Linear Motion system

精密機械などにおいて、送りねじによる位置決め精度を向 上させたり、負荷荷重に対する剛性を高くするためには、送 りねじ軸系全体の剛性を検討する必要があります。 送りねじ軸系の剛性は、次のようになります。

In precision machinery, to improve positioning accuracy of the drive screws or to increase Rigidity for load, the Rigidity of the entire Linear Motion system must be examined. Rigidity of entire Linear Motion system is as follows.

$$\frac{1}{K} = \frac{1}{K_1} + \frac{1}{K_2} + \frac{1}{K_3} + \frac{1}{K_4} \quad \mu \, \text{m/N}$$

K :送りねじ軸系全体の剛性(Total Rigidity of Linear motion system)	N/μ m
Kı: ねじ軸の剛性(Screw Shaft Rigidity)	N/μ m
K ₂ :ナットの剛性(Nut Rigidity)	N/μ m
K3 :支持軸受の剛性(Support Bearing Rigidity)	N/μ m
K4 :ナットと軸受取付部の剛性(Nut, Bearing fitting part Rigidity)	N/μ m

●送りねじ軸系全体の剛性 Total Rigidity of Linear Motion system K

$$K = \frac{Fa}{\delta} N/\mu m$$

Fa:送りねじ軸系にかかる軸方向荷重 (Axial load applied to Linear Motion system) δ : 送りねじ軸系の弾性変位量 μ m (Elastic displacement of Linear Motion system)

●ねじ軸の剛性 Screw Shaft Rigidity K₁

(1)一般的な取付けの場合(軸方向に固定一自由の場合)(図 A-108)

In case of general mounting (Fixed-Free in axial direction) (Fig. A-108)

$$K_1 = \frac{A \cdot E}{\varrho} \times 10^{-3} \qquad N/\mu \, m$$

(2)両端固定の場合(図 A-109)

In case of Fixed-Fixed mounting in axial direction (Fig. A-109)

$$K_1 = \frac{A \cdot E \cdot L}{\ell (L - \ell)} \times 10^{-3} \quad N/\mu \, m$$

$\ell = L/2$ のとき、最大軸方向変位を生じるため以下となります。

The max. axial displacement occurs when $\ell = L/2$. The formula is as follows.

$$K_1 = \frac{4 \cdot A \cdot E}{L} \times 10^{-3} \quad N/\mu \, m$$

A: ねじ軸の最小断面積(Screw Shaft minimum section area)

$$A = \frac{\pi}{4} d^2 mm^2$$

d: ねじ軸谷径(Screw Shaft Root diameter)

mm

E:ヤング率(Young's modulus)

 $2.08 \times 10^{5} \text{ N/mm}^{2} \text{ (MPa)}$

L:取付間距離(Mounting span distance)

したがって軸方向荷重 Faによるねじ軸の弾性変位量 δ は、以下の式となります。

Accordingly, the amount of Screw Shaft Elastic displacement δ due to Axial load Fa is as follows.

$$\delta = \frac{Fa}{K_1} \mu m$$

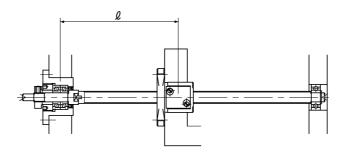


図 A-108: 軸方向に固定一自由の場合 Fig. A-108: Fixed-Free in axial direction

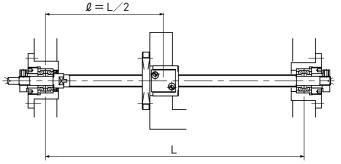


図 A-109: 両端固定の場合

Fig. A-109: Fixed-Fixed in axial direction

●ナットの剛性 K₂

2018年のJIS B1192 第4部の制定により、軸方向静剛性の 計算式が規定されました。KSSではJISに規定された計算 式に準じて理論静剛性を計算します。

(1)シングルナットすきま品の剛性

シングルナットすきま品のナットの理論静剛性K2は 以下の式で計算します。

● Nut Rigidity K₂

Calculation formula of static Rigidity is defined by JIS B1192-4 established in 2018. KSS will use the formula which is defined by JIS to identify the static Rigidity.

(1) Rigidity of Single Nut with backlash

Theoretical static Rigidity (K2) of the Single Nut with backlash is calculated by the formula as

$$K_2 = f_{ar} \times (3/2) \times F_a/\delta \quad (N/\mu m)$$

$$\delta = k \times Fa^{2/3} \qquad (\mu \, m)$$

$$k = \frac{C}{Z^{2/3} \times Dw^{1/3} \times (\sin \alpha \times \cos \beta)^{5/3}}$$

1. · 图M性性体系数(Digidity characterization factor)

K	· 阿里特主義(Rigidity Characterization factor)	
Ζ	:負荷を受けるボール個数(Quantity of loaded Ball)	個(qty.)
Dw	:ボール径(Diameter of Ball)	mm
а	:ねじ溝接触角(Contact angle to the thread groove)	度(deg.)
β	:リード角(Lead angle)	度(deg.)
С	:材料、形状、寸法によって定まる補助係数	$0.52 \sim 0.58$
	(Coefficient depending on the material, shape and dimension)	$(0.52 \sim 0.58)$

なお、基本動定格荷重Caの30%の軸方向荷重が作用し たときのナットの理論静剛性値K2を「寸法表」に記載 しています。軸方向荷重が基本動定格荷重Caの30%で はない場合は、次式で簡単に計算できます。

$$K'_2 = K_2 \times (\frac{Fa}{0.3Ca})^{1/3} N/\mu m$$

The theoretical static Rigidity K₂ of the Nut under an Axial load equivalent to 30% of the Basic Dynamic Load Rating Ca is described in dimension table. For Axial loads which are not 30% of the Basic Dynamic Load Rating Ca, it can be easily calculated by following formula.

K2:寸法表記載のナット剛性値(Nut Rigidity in dimension table)	N/μ m
Fa:軸方向荷重(Axial load)	N
Ca: 基本動定格荷重(Basic Dynamic Load Rating)	N

(2)予圧品(すきまゼロ品)の剛性

シングルナット予圧品のナットの理論静剛性K2は、軸 方向荷重Faが予圧量Forの 2√2 倍以下であれば、軸方 向荷重Faによらず一定の値となり、以下の式で計算し

(2) Rigidity of preloaded Ball Nut

Theoretical static Rigidity (K2) of the preloaded single Ball Nut will become a fixed value if axial load(Fa) is less than $2\sqrt{2}$ times of the preload amount (Fpr) regardless of the value of the axial load (Fa), and this will be calculated as follows.

$$K_2 = 2^{3/2} \times \frac{1}{k} \times F_{Pr}^{1/3} \quad N/\mu \, m$$

k :剛性特性係数(Rigidity Characterization factor)

上述参照(See formula stated above)

Fpr: 予圧荷重(Preload amount)

Ν

予圧品(すきまゼロ)の場合は、予圧動トルク値のばらつき によって剛性値も変化します。そのため、詳細はKSSへお問 い合わせください。なお、軸方向荷重Faが予圧量Fprの2√2 倍を超える場合は、シングルナットの理論静剛性値と同じ 計算式となります。

depending on the dispersion of Preload Dynamic Drag Torque. Therefore, please inquire KSS for details. If the axial load (Fa) will be more than $2\sqrt{2}$ times of the preload amount (F_{pr}) , the calculation formula will be the same as the formula for single Nut Theoretical static Rigidity.

In case of Preload type Ball Screws, Rigidity varies

基本動定格荷重Caの5%の予圧荷重を与えたときのナット の理論静剛性値K2を「寸法表」に記載しています。予圧荷重 が上記と異なる場合は、次式で簡単に計算できます。

The theoretical static Rigidity K2 under a Preload equivalent to 5% of the Basic Dynamic Load Rating Ca is described in dimension table. For Preload amounts other than the above, it can be easily calculated by following formula.

$$K'_{2} = K_{2} \times (\frac{F_{pr}}{0.05Ca})^{\frac{1}{3}} N/\mu m$$

K2: 寸法表記載のナット剛性値(Nut Rigidity in dimension table) $N/\mu m$ F₀r: 予圧荷重(Preload amount) Ca:基本動定格荷重(Basic Dynamic Load Rating) Ν

●支持軸受の剛性 K₃

支持軸受の剛性は、使用する軸受やその予圧量によって異 なりますので、軸受メーカにお問い合わせください。

●ナットと軸受取付け部の剛性 K4

ナット取付け部分や軸受取付け部分などの剛性は、装置の 構造、設計により異なりますので、弊社では言及しません が、できるだけ剛性の高い設計を行うようにしてください。

●ねじ軸のねじり剛性

ねじれによる位置決め誤差は、軸方向変位と比較して小さ い値となりますが、検討が必要な場合は、以下の式で計算で きます。

Support Bearing Rigidity K₃

inquire Bearing manufacturers.

•Nut, Bearing fitting part Rigidity K4

Screw Shaft torsion Rigidity For positioning error due to torsion, this error is a relatively small compared to axial displacement. However, if investigation is required, the following formula may be used for calculation.

Support Bearing Rigidity varies depending on the

Rigidity of Nut mounting part and Bearing mounting

design. KSS cannot mention the details but a design

type of Bearing and amount of Preload. Please

part vary depending on machine structure and

$$\theta = \frac{32TL}{\pi Gd^4} \times \frac{180}{\pi} \times 10 \quad \deg$$

 θ : ねじりモーメントによるねじれ角(Torsion angle due to torsion moment) deg T: ねじりモーメント(Torsion moment) N·cm

L:ナットと軸端支持部との距離(Distance between Nut & Shaft end support) mm

G: 横弾性係数(Modulus of Rigidity) $8.3 \times 10^4 \text{ N/mm}^2 \text{ (MPa)}$ d: ねじ軸谷径(Screw Shaft Root diameter)

Amount of axial displacement δ a due to torsion angle is as follows.

ねじれ角による軸方向の変位量δaは、以下となります。

$$\delta a = \ell \times \frac{\theta}{360} \times 10^3 \mu \text{ m}$$

A823

基本定格荷重と基本定格寿命 Basic Load Rating and Basic Rating Life

●基本動定格荷重Caと基本定格寿命

ボールねじの定格寿命とは、一群の同じボールねじを同じ 条件で個々に運転したとき、そのうちの90%のボールねじ が、ボール溝とボールの表面に転がり疲れによるフレーキ ング(剥離)を起こさないで運転できる総回転数をいいま す。基本動定格荷重Caとは、100万回転の定格寿命となる ような軸方向荷重をいい、この値は寸法表にCaとして記 載しています。ボールねじの定格寿命L10は、この基本動定 格荷重Caの値を用い、次の基本式で推定することができ ます。

$$L_{10} = (\frac{Ca}{f \cdot Fa})^3 \times 10^6$$
 rev.

また、定格寿命を総回転数で表す代わりに時間L_{10h}あるいは走行距離L_{10d}で表す場合があり、次の式で計算できます。

Also, in place of the total number of revolutions, the Basic Rating Life can be expressed in hours: L_{10h} or traveled distance: L_{10d}, and these can be calculated through the following formulas.

Ν

The Basic Rating Life of Ball Screws means the total

number of revolutions which 90% of the Ball Screws

can endure. Failure is indicated by flaking caused by

same conditions. The Basic Dynamic Load Rating Ca

1.000.000 revolutions. These values are listed under

rolling fatigue on the surface of grooves or Balls.

These figures are valid when a group of the same type Ball Screws are operated individually under the

is the Axial load for which the Basic Rating Life is

Ca in the dimension tables. Ball Screw's Basic

Rating Life L₁₀ can be estimated using Basic Dynamic Load Rating Ca in the following basic

$$L_{10h} = (\frac{1}{60 \cdot N}) \times L_{10}$$
 時間(hours)

 $L_{10d} = (\frac{\ell}{10^6}) \times L_{10} \text{ km}$

Ca:基本動定格荷重(Basic Dynamic Load Rating)

Basic Dynamic Load Rating Ca

and Basic Rating Life

formula.

Fa:軸方向荷重(Axial load) N N:回転数(Revolution) min⁻¹ ℓ:リード(Lead) mm

f :荷重係数(Load factor)

f=1.0~1.2 ほとんど振動、衝撃のない場合

(for almost no vibration, no impact load)

f=1.2~1.5 やや振動、衝撃のある場合

(for slight vibration, impact load)

f=1.5~3.0 強い振動、衝撃のある場合

(for severe vibration, impact load)

一般に装置に作用する軸方向荷重は一定ではなく、何種類かの運転パターンに分けられます。このような場合は、次の式で等価軸方向荷重Fam、等価回転数 N_m を求めることにより、定格寿命を計算することができます。

Generally, Axial load on the most machine is not constant and it can be divided into several operating pattern. In this case, Basic Rating Life can be calculated to figure up equivalent Axial load Fam, equivalent Revolution N_m in the following formula.

Axial load 軸方向荷重 N	Revolution 回転数 min ⁻¹	Frequency of use 使用頻度 %
Fa ₁	N ₁	t ₁
Fa ₂	N ₂	t ₂
Fa₃	N ₃	t ₃

$$Fam = (\frac{-Fa_1{}^3 \cdot N_1 \cdot t_1 + Fa_2{}^3 \cdot N_2 \cdot t_2 + Fa_3{}^3 \cdot N_3 \cdot t_3}{N_1 \cdot t_1 + N_2 \cdot t_2 + N_3 \cdot t_3})^{1/3} \quad N$$

$$N_m = \frac{N_1 \cdot t_1 + N_2 \cdot t_2 + N_3 \cdot t_3}{t_1 + t_2 + t_3} \quad min^{-1}$$

また、軸方向荷重が直線的に変化するときの平均軸方向荷 重Famは、近似的に次の式で計算することもできます。 Also, for Axial loads which vary linearly, the average Axial load Fam can be calculated approximately using the following formula.

$$Fam = \frac{Fa \min + 2 \cdot Fa \max}{3}$$
 N

Fa min:最小軸方向荷重(Minimum Axial load) N
Fa max:最大軸方向荷重(Maximum Axial load) N

注)ボールねじの寿命計算は、潤滑が良好な状態で異物の 混入もないという前提で、かつモーメント荷重、および ラジアル荷重が作用しない純スラスト荷重下での計算 式です。

Note) As the Basic Rating Life varies due to lubricating conditions, and contaminations, Moment load or Radial load, etc., this should be considered a rough estimate only.

2018年のJIS B1192 第5部の制定により、基本定格寿命を計算する際に、荷重の向きや予圧荷重を加味することが規定されました。そのため、ミニチュアボールねじの定格寿命計算もこれらに準じた計算式を適用いたします。

●荷重の向きを考慮した寿命計算

荷重の向きにより、ボールの接触点位置が変わるため(図A-110参照)、それぞれのボール接触点で定格寿命を算出し、いずれかの接触点で剥離(フレーキング)が生じた時点を寿命と考えます。これは、以下の式によって計算します。

Load direction and Preload will be taken into consideration when calculate the Basic Rating Life by JIS B1192-5, which was established in 2018. Therefore, KSS uses a calculation formula of Basic Rating Life for Miniature Ball Screws that is conformed to JIS B1192-5.

Life calculation considered the Load direction

Contact point of the Steel Balls changes based on Load direction (see Fig. A-110), therefore it is considered the lifetime when flaking occurred at any contact points, with calculating the Rating Life at each contact point of the Steel Balls. The calculating formula is as follows.

$$L'_{10} = (L_{10(A)}^{-10/9} + L_{10(B)}^{-10/9})^{-9/10}$$
 rev.

L'10 :接触点A側とB側の合成寿命(Merged Basic Rating Life of contact point A and B)

L_{10(A)}: ボール接触点 A側での定格寿命(Basic Rating Life on contact point A) L_{10(B)}: ボール接触点B側での定格寿命(Basic Rating Life on contact point B)

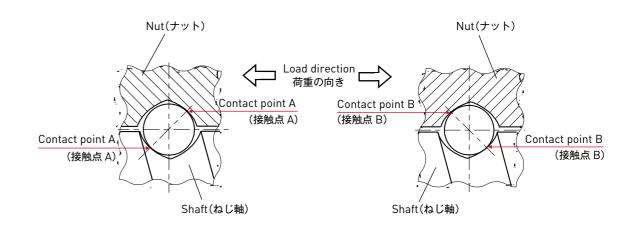


図 A-110:荷重の向きによるボール接触状態 Fig. A-110:Ball contact condition by load direction

●予圧荷重を考慮した寿命計算

予圧が負荷されたボールねじの場合は、オーバーサイズボールが組み込まれていますので、無負荷の状態でボールは4点接触しています。そのため、それぞれのボール接触点での定格寿命を算出し、いずれかの接触点で剥離(フレーキング)が生じた時点を寿命と考えます。

オーバーサイズボールにより予圧が作用している場合、ボール接触状態は図 A-111のようになっています。弾性変位の大きさを模式的に楕円(接触楕円)で表しています。外部荷重がない状態では、接触点A、Bともに均等な接触状態となっています。

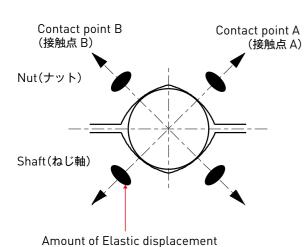


図 A-111: 予圧が作用した状態のボール接触状態 Fig. A-111: Ball Contact condition under Preload

ここに外部荷重Faが作用すると、接触点A側は、弾性変位が大きくなり、接触点B側は弾性変位が小さくなります(図 A-112)。

この場合、接触点A、Bに作用する荷重は、ヘルツの弾性変位理論より、以下の式で計算できます。

これらを基本定格寿命の基本式に代入することで、それぞれの接触点での定格寿命が算出できます。

Fa ≦ 2√2 Fprの場合

弾性変位の大きさ

● Life calculation considered the Preload

Preloaded Ball Screw is filled with oversized Balls, therefore each Steel Ball is contacted at four (4) points between Screw Shaft and Ball Nut. It is considered the lifetime when flaking occurred at any contact points, with calculating the Rating Life at each contact point.

The contact point of the Steel Balls is described in Fig. A-111, when Preload is effective by oversized Balls. The amount of Elastic displacement is described schematically by oval (contact ellipse). Both contact point A and B are evenly contacted under no load from outside.

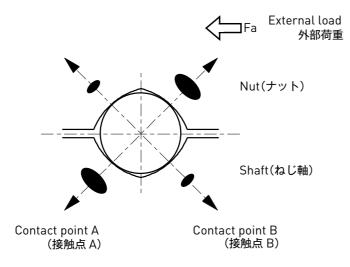


図 A-112: 外部荷重が作用した状態でのボール接触状態 Fig. A-112: Ball contact condition under preload & external load

When external load (Fa) is applied, Elastic displacement increases at contact point A, and decreases at contact point B (see Fig. A-112). In this case, the load at contact point A and B can be calculated as below based on the Hertz theory of Elastic displacement.

By substituted each values into the formula of Basic Rating Life, Rating Life of each contact point can be calculated.

In case of Fa $\leq 2\sqrt{2}$ F_{pr}

$$Fa_{(A)} = F_{pr} \times (1 + \frac{Fa}{2^{3/2} \times F_{pr}})^{3/2}$$
 $Fa_{(B)} = Fa_{(A)} - Fa_{(B)}$

Fa : 外部軸方向荷重(Amount of external load) N
Fa(A): 接触点A側に作用する軸方向荷重(Axial load applying on contact point A) N
Fa(B): 接触点B側に作用する軸方向荷重(Axial load applying on contact point B) N
Fpr : 予圧荷重(Preload) N

Fa > 2√2 F₀rの場合

In case of Fa $> 2\sqrt{2}$ F_{pr}

$$Fa_{(A)} = Fa$$
 $Fa_{(B)} = 0$

注) AとBの荷重の向きは逆方向になります。

Note) Load direction of A and B is opposite.

上式で算出した軸方向荷重の値を使用して、接触点A、Bでの定格寿命($L_{10(A)}$ 、 $L_{10(B)}$)を計算し、2つを合成した組み合わせ寿命を算出します。

Using the value calculated by the above formula, calculate the Rating Life at each contact point A and B ($L_{10(A)}$, $L_{10(B)}$), then merge both value to calculate the merged Basic Rating Life.

$$L_{10(A)} = \left(\frac{Ca}{f \cdot Fa_{(A)}}\right)^3 \times 10^6 \quad \text{rev.}$$

$$L_{10(B)} = \left(\frac{Ca}{f \cdot Fa_{(B)}}\right)^3 \times 10^6 \quad \text{rev.}$$

$$L'_{10} = \left(L_{10(A)}^{-10/9} + L_{10(B)}^{-10/9}\right)^{-9/10}$$

注)概略計算の場合、単純に外部荷重に予圧荷重F_{pr}を 加算した値を軸方向荷重として寿命計算する場合も あります。

●基本静定格荷重Coa

基本静定格荷重Coaとは、最大応力を受けている接触部でボールの軌道面とボールの永久変形量の和が、ボールの直径の1/10,000になるような軸方向の静止荷重をいい、この値は寸法表にCoaとして記載しています。この基本静定格荷重Coaの値は、静止状態あるいは回転数が非常に低い場合(10min⁻¹以下)の荷重条件を検討するときに使用しますが、この永久変形量では多くの場合、使用上問題ありません。なお、このときのねじ溝部の最大許容荷重Fa maxは、次式により求められます。

Fa max =
$$\frac{\text{Coa}}{\text{fs}}$$
 N

fs:静的安全係数(Static safety factor)

fs=1~2 普通運転のとき (for normal operation)

fs=2~3 振動、衝撃のあるとき(for vibration, impact)

●硬さ係数 Hardness coefficient

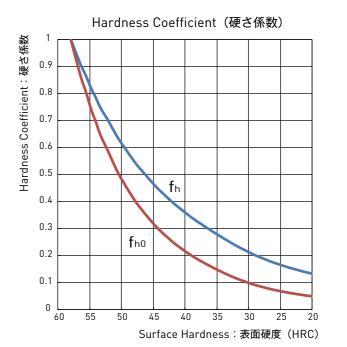
表面硬度がHRC58(654 Hv10)未満の場合は、基本動定格荷重Caと基本静定格荷重Coaに補正を行う必要があります。 補正は下記の式で行います。

For Surface hardness of less than HRC58(654 Hv10), the Basic Dynamic Load Rating Ca and the Basic Static Load Rating Coa must be adjusted. Adjustment is made by the following formula.

Ca' = f_h·Ca (N)
Coa' = f_{h0}·Coa (N)

$$f_h = (\frac{H_a}{654})^2 \le 1$$

 $f_{h0} = (\frac{H_a}{654})^3 \le 1$


f_h, f_{ho}: 硬さ係数(右図) Hardness coefficient

(See formula above and graph right)

Note) As a rough estimation of Basic Rating Life, we consider the Axis load as external load added by preload amount Fpr for some cases.

Basic Static Load Rating Coa

The Basic Static Load Rating Coa is the Axial Static load at which the amount of permanent deformation (Ball + Raceway) occurring at the maximum stress contact point between the Ball and Raceway surfaces is 1/10,000 times the Ball diameter. These values are listed under Coa in the dimension tables. The Basic Static Load Rating Coa values apply to investigation of stationary state or extremely low Revolution load conditions (less than 10 min⁻¹). However, in most cases the amount of permanent deformation causes absolutely no problems under the general conditions. The maximum permissible load Fa max for the screw groove can be found by using the following formula.

駆動トルク **Driving Torque**

送りねじ系の駆動トルクTは、次式により求められます。

Driving Torque in Linear Motion System T is expressed according to the following formula.

 $T = T_1 + T_2 + T_3 + T_4$ N·m

T₁: 加速によるトルク(Acceleration Torque) $N \cdot m$ T2: 負荷トルク(Load Torque) $N \cdot m$ T₃: 予圧動トルク(Preload Dynamic Drag Torque) N·m T₄: その他のトルク(Additional Torque)

送りねじ系に発生するトルクは、モータ選定の際に必要となります。 T₁~T₃については、以下の式で計算することができます。

When Motor selection, Driving Torque in Linear Motion System is needed. $T_1 \sim T_3$ can be calculated by the following formula

●加速によるトルク Acceleration Torque T₁

 $T_1 = \alpha \cdot I \quad N \cdot m$

$$\alpha = \frac{2\pi N}{60 \cdot t} \quad \text{rad/sec}^2$$

$$I = Iw \cdot A^2 + Is \cdot A^2 + I_A \cdot A^2 + I_B \quad kg \cdot m^2$$

$$lw = m_W \times (\frac{\ell}{2\pi})^2 \quad kg \cdot m^2$$

$$Is = m_S \times (\frac{d^2}{8}) \quad kg \cdot m^2$$

$$m_S = \pi \left(\frac{d}{2} \right)^2 \times L \times \gamma \quad kg$$

t : 加速時間(Acceleration time)

а	: 角加速度(Angular acceleration)	rad/sec ²
	: 慣性モーメント(Inertia moment)	kg·m²
lw	:移動物のモータ軸換算の慣性モーメント	kg·m²
	(Inertia moment of moving object by Motor axial conversion)	
ls	:ねじ軸の慣性モーメント(Inertia moment of Screw Shaft)	kg·m²
I_A	: ねじ軸側のギヤ等の慣性モーメント(Inertia moment of gears on	screw side) kg·m²
I_{B}	: モータ側のギヤ等の慣性モーメント(Inertia moment of gears on	motor side) kg·m²
mw	:移動物質量(Mass of moving object)	kg
ms	: ねじ軸質量(Mass of Screw Shaft)	kg
Q	: リード(Lead)	m
d	: ねじ軸外径(Screw Shaft diameter)	m
L	: ねじ軸長さ(Ball Screw length)	m
γ	: 比重(Specific gravity)	7,850 kg/m³
Α	: 減速比(Reduction ratio)	
Ν	:モータの回転数(Motor speed)	min ⁻¹

●負荷トルク Load Torque T₂

$$T_2 = \frac{P \cdot \ell \cdot A}{2\pi \eta} \times 10^{-3} = \frac{(F + \mu mg)}{2\pi \eta} \cdot \ell \cdot A \times 10^{-3} \quad N \cdot m$$

P: 軸方向荷重(Axial load) Ν F:負荷荷重(Load) Ν m: 移動物質量(Mass of moving object) kg q : 重力加速度(Gravity acceleraration)=9.8×103 mm/sec2

 $\ell: \mathcal{V} - \mathcal{V}(Lead)$ mm

μ:摺動面摩擦係数(Sliding surface friction coefficient) η : 効率(Efficiency)=0.9

A: 減速比(Reduction ratio)

Moving Object/移動物 Table/テーブル

●予圧動トルク Preload Dynamic Drag Torque T₃

$$T_3 = 0.05 \times (\tan \beta)^{-0.5} \times \frac{F_{pr} \cdot \ell}{2\pi} \times 10^{-3} \text{ N} \cdot \text{m}$$

 β : リード角(Lead angle) Fpr: 予圧荷重(Preload) ℓ:リード(Lead) mm

●その他のトルク Additional Torque T4

上記以外で発生するトルクをいいます。例えば支持軸受の摩擦トルクやオイルシールの摺動抵抗によるトルクなどです。

Described as Torque which occurs in addition to those listed above. For example, support Bearing friction Torque, oil seal resistance Torque, etc.

防錆と潤滑

Rust prevention and Lubrication

●防錆処置

KSSボールねじは長期保管を前提として、防錆油が塗布さ れています。ご使用に際しては、清浄な白灯油で洗浄し、潤 滑油またはグリースを塗布してください。お客様のご指定 により、グリースを塗布して出荷することもできますが、 長期間保管する場合には、錆の発生が懸念されますので、 ご注意ください。

注)KSSが塗布する防錆油は、防錆性能に重点を置いてい るため、潤滑油としての機能はありません。そのため防 錆油のまま、ご使用になられた場合は、早期寿命、トル ク増大、異常発熱等の問題が発生します。

ボールねじのご使用に際しては、必ず潤滑剤の供給が必要 です。潤滑剤が供給されない場合は、トルク増大や早期寿 命等の問題が発生します。潤滑剤の供給により、摩擦によ る温度上昇、機械効率の低下、摩耗による精度の低下を抑 えることができます。

ボールねじの潤滑は、グリース潤滑と油潤滑に分けられま す。グリース潤滑の場合、通常リチウム石けん基系グリー ス、油潤滑の場合には、ISO VG32~68(タービン油)を推奨 いたします。また使用用途によって潤滑剤の選定は、非常 に重要となります。特にミニチュアボールねじでは、グ リースの撹拌抵抗により、トルク増大などの不具合を引き 起こす場合があります。KSSでは、作動性を維持しながら 潤滑性能の高いKSSオリジナルグリースを用意していま す。作動性を重視した低速位置決め用途には、MSG No.1 (ちょう度 1番) を、また高速、一般用途にはMSG No.2 (ちょう度 2番)を取りそろえています。詳しくは、ページ B101の「ミニチュアボールねじ専用グリース |を参照くだ

Rust prevention

KSS Ball Screws are applied anti-rust oil when shipping in case of no specific instruction. This oil should be removed before use. Wash Ball Screws with cleaned Kerosine and apply lubricant (Grease or Oil) on Ball Screws. As customer's request, specified Grease or Oil can be applied, but it should be noted that they are not suitable for long term storage purpose and rust might occur.

Note) Anti-rust oil is focused on anti-rust performance and it does not have lubricating function. Therefore, when using Ball Screws with anti-rust oil coating, the problems such as shortened Life, increase of Torque and abnormal heat generation occurs.

• Lubrication

In Ball Screw use, lubricant should be required. If lubricant is not applied with, the problem such as increase of Torque and shortened Life occurs. Applying lubricant can minimize temperature increases, decline of mechanical efficiency due to friction, and deterioration of accuracy caused by

Ball Screw lubrication is divided into Greasing and Oiling. A regular lithium-soap-based Grease and ISO VG32-68 Oil (turbine Oil #1 to #3) are recommended. It is highly important to choose lubricant depending on customer's usage. Especially in case of Miniature Ball Screws, malfunction such as increase of Torque are caused by the stir resistance. KSS original Greases which maintains Ball Screw's smooth movement and have high lubricating performance are prepared. MSG No.1 is appropriate for high smooth requirement and high positioning usage (consistency 1). MSG No.2 is suitable for high speed and general usage (consistency 2). Please refer to page B101 [Original Grease for Miniature Ball Screws].

一般使用条件における潤滑剤例

Recommended lubricants for normal operating conditions

Lubricant	Type	Product name
潤滑剤	種類	商品名
Grease	Lithium-based Grease	KSS original Grease MSG No.2
グリース	リチウム系グリース	KSS オリジナルグリース MSG No.2
Lubricating Oil	Sliding surface Oil or turbine Oil	Super Multi 68
潤滑油	摺動面油またはタービン油	スーパーマルチ68

●点検と補給

点検は、グリース潤滑の場合2~3ヶ月、油潤滑の場合は、1 週間を目安に実施してください。なお、点検時には、油量及 び汚れのチェックを行い、必要に応じて補給してください。 新しいグリースを給脂する際は、変色した古いグリースを できる限り拭き取ってください。

Inspection and replenishment

Grease inspection should be performed once every two to three months, and Oil inspection should be performed approximately weekly. Check the Oil or Grease amount and contamination at each inspection and replenish if needed.

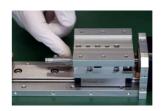
When re-greasing, the old or discolored one should be wiped off as much as you can.

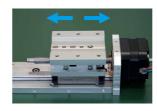
潤滑剤の点検と補給間隔

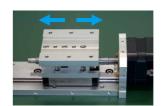
Inspection and replenishment Interval of lubricant

Lubrication 潤滑方法	Inspection frequency 点検間隔	Inspection Items 点検項目	Replenishment and replacement frequency 補給または交換間隔
Automatic intermittent lubrication 自動間欠給油	Weekly 1週間ごと	Oil level, contamination 油量、汚れなど	Replenish at each inspection, depending on tank capacity 点検ごとに補給、ただしタンク容量により適宜
Grease グリース	Every 2 to 3 months initially 稼働初期2~3ヵ月	Contamination, swarf contamination 汚れ、切粉の混入など	Replenish annually or as necessary, depending on Inspection results The old or discolored grease should be wiped off before re-greasing. 通常1年ごとに補給、ただし点検結果により適宜 古い変色したグリースは拭き取り
Oil bath 油浴	Daily before operation 毎日始業前	Oil suface check 油面管理	Set a rule for replenishment as necessary, depending on amount of wear. 消耗状況により適宜規定化

●グリースアップの手順(例)


- 1) グリースアップに際しては、ゴム手袋を着用し、 ボールねじを素手で触らないようにしてください。
- 2)ねじ軸上に付着している変色したグリースを専用 シート(キムワイプなど)を使用して拭き取ります。 ナットを移動させ、ナット内に残存しているグリース もできるだけ拭き取ってください。




3) KSSボールねじは、標準では給油穴は設けていません。 そのため、ねじ軸全体にグリースを塗布します。専用の ブラシやハケを使用するか、ゴム手袋を着用して、直接 ねじ軸に塗布してください。ナットに給油穴がある場 合は、それを利用して新しいグリースを封入します。

4)ナットをねじ軸全域にわたり移動させ、塗布できて いない部分にもグリースを塗布します。可能であれば、 ナットを何回か往復させ、簡単な慣らし運転を行いま す。軸端に溜まった余剰グリースを拭き取ってくださ (1.

詳細はKSSまでお問い合わせください。

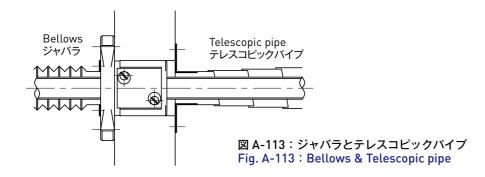
● Grease-up Procedure (Example)

- 1) It is desirable to wear rubber gloves, not to handle Ball Screw by bear hand.
- 2) Wipe off discolored Grease on the Screw Shaft by using cloth or paper exclusive for wiping Grease or oil (e.g.: Kim Wipes by Kimberly-Clark Corp.). Move the Ball Nut to wipe off remaining Grease inside the Ball Nut as much as possible.

3) There is no oil hole on the flange for KSS Ball Screws as standard design, apply Grease entirely throughout the Screw Shaft. Please use the brush exclusive for applying Grease, or apply directly to the Screw Shaft by hand with wearing rubber gloves. If the Ball Nut has an oil hole, utilize it to fill in the new Grease.

4) In order to apply Grease entirely on the Screw Shaft, move the Ball Nut over full travel manually, or install in the device and do running-in. Remove any remaining Grease on either end of the Screw Shaft.

Please consult KSS for details


A831

防塵

Dust prevention

ボールねじは、その機能上ナットにごみや異物が混入する と摩耗が早く進行したり、またねじ溝の損傷、ボールの割れ、 循環部の破損などにより作動不能となる場合があります。 したがって、ごみや異物の混入が考えられる場合には、ねじ 部が外部に露出しないようにジャバラやテレスコピックパ イプなどの防塵対策をお奨めします。

In Ball Screws, if dust or other contaminations intrude into the Ball Nut, wear is accelerated, the screw groove will be damaged, circulation will be obstructed due to Ball fracture, damage of recirculation parts and so on. Eventually, the Ball Screws will cease to function. Where the possibility of dust or other contaminant exists, the screw thread section cannot be left exposed, and dust prevention measure such as a bellows or Telescopic pipe must be taken.

KSSボールねじは、ミニチュアボールねじの特長を活かす ため、コンパクト設計に重点を置いています。そのためカタ ログ掲載型番については、シールを装着しない寸法となっ ています。シールをご要望の場合は、KSSへ問い合わせくだ さい。シールを取付けることによりナット寸法が変更にな る場合がありますので、ご了承ください。また、型式によっ ては、シールの取付けができない場合がありますので、ご理 解をお願いします

KSS Ball Screws are concentrated on compact design for a feature of Miniature Ball Screw. Therefore, all models in the catalogue are the dimension without seals. Please inquire KSS if seals are required. Please note that Nut dimension may change due to seal installation. Some models cannot install the seals.

表面処理

Surface treatment

KSSでは、防錆を目的としてボールねじに表面処理を施す ことができます。KSSでの防錆を目的とした表面処理は、極 低温黒色クロム処理を標準としています。その他の表面処 理をご要望の場合は、KSSへご照会ください。

Surface treatment can be possible for the purpose of rust prevention. Very Low temp. Black Chrome treatment(BCr) is KSS standard surface treatment for the purpose of rust prevention. Please inquire KSS if other surface treatments are needed.

●KSS極低温黒色クロム処理ボールねじの特長

- 薄い膜厚のため、はめ合い部品への対応が可能です。
- 厳格な工程管理により、膜厚を均一に処理できるため、 作動性を損なうことがありません。
- 密着性の良い被膜で高い防錆能力を保有しています。
- すべり特性を向上したい場合は、フッ素樹脂コーティン グとの併用も可能です。

• Feature of KSS Ball Screws with Very Low temp. Black Chrome (BCr) coating

- Due to thin film thickness, mating part can be applicable with BCr.
- Due to strict production management, film thickness can be treated equally and smoothness is kept.
- High anti-rust ability is possible.
- To improve sliding characteristics, BCr+fluorine resin coating is also available.

写真 A-114:極低温黒色クロム処理品 Photo A-114: Very Low temp. Black Chrome coating

●防錆能力試験データ Examination data of anti-rust ability

塩水噴霧試験(JIS Z2371)に準じ、標準試験片を使用して防錆能力を評価した結果を以下に示します。

Based on the salt spray corrosion test(JIS Z2371), anti-rust ability has been evaluated, as follows.

- 標準試験片 / Standard test piece: 70mm×150mm×1mm(SPCC材 / material= SPCC)
- データ / Data: 塩水噴霧試験24時間後の外観とレイティングナンバー法による評価結果(数字が小さいほど腐食が多い) Evaluated by appearance and rating number method after 24 hours of salt spray corrosion test. (The less number, the more corrosion)

	Rating number(Average) レイティングナンバー(平均値)
Sample A(BCr coating) 試験片A(BCr処理)	9.3
Sample B(R coating) 試験片B(R処理)	9~8
Sample C(M coating) 試験片C(M処理)	3~4

試験片A

Sample B 試験片B

Sample C 試験片C

●RoHS対応について About RoHS compliance

KSS極低温黒色クロム処理ボールねじの六価クロム量は、RoHSで規定されている閾値を下回っており、問題ありません。

The amount of hexavalent Chromium in KSS Very Low temp. Black Chrome(BCr) coating is less value than the based on RoHS regulation.

Technical descriptiorボールねじ技術解説

トレーサビリティー Traceability

KSSボールねじは、厳選した材料を、高度に温度管理された 工場で、優れた機械設備を駆使して、各製造工程から検査、出 荷に至るまで、一貫した管理体制により生産されています。 出荷検査に合格したボールねじは、ご要望により合格証(写 真 A-115)または検査成績表(写真 A-116)を添付すること ができます。

KSSで生産されたボールねじは、ナットに製造番号がマーキングされています(写真 A-117)。

製造番号に対応した出荷検査履歴や製造履歴は、社内で保管されており、製造番号による問い合わせで、出荷検査データを再現できるようになっています。

なお、一部、製造番号マーキングの対象外となる製品がありますので、KSSまでお問い合わせください。

KSS Ball Screws are manufactured from rigidly selected materials in our temperature controlled factory. They are manufactured using the latest production equipment, with consistent quality control supervision ranging from the production process to inspection and shipping.

Certificate of inspection, Photo A-115, or Inspection report, Photo A-116 can be provided as your request. The Ball Screws produced by KSS have a serial number which is marked on the Nut (refer to the Photo A-117). Record of inspection and production trail which is in correspondence to a production number, are stored in KSS and inspection data can be retrieved by inquiry of a serial number.

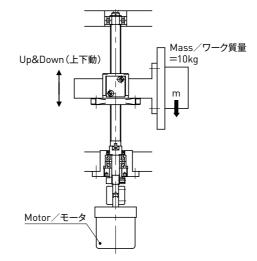
However, some products may not be applicable for serial number, please ask KSS for more detail.

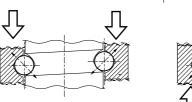
写真 A-115: 合格証

Photo A-115: Certificate of Inspection

写真 A-116: 検査成績表 Photo A-116: Inspection report

写真 A-117:製造番号 Photo A-117:Serial Number

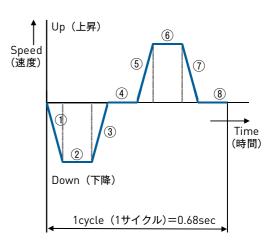

ボールねじの諸特性計算例


Calculation example of characteristic for Ball Screws.

2018年のJIS B1192 第5部の制定により、基本定格寿命を計算する際に、荷重の向きや予圧荷重を加味することが規定されました。そのため、ミニチュアボールねじの定格寿命計算もこれらに準じた計算式を適用いたします。

例1: 縦軸仕様 Pick&Place Example 1: Vertical Pick&Place

ボールねじ型式と使用条件 Ball Screw model and operating condition



下向き荷重とボール接触状態 Downward load & Ball contact condition

図 A-118: 荷重の向きとボール接触状態 Fig. A-118: Load direction and Ball Contact condition

Load direction and Preload will be taking into consideration when calculate the Basic Rating Life by JIS B1192-5, which was established in 2018. Therefore, KSS uses a calculation formula of Basic Rating Life for Miniature Ball Screws that is conformed to JIS B 1192-5.

Operating pattern (運転サイクル線図)

縦軸仕様のアプリケーションで寿命計算を行う場合、荷重の向き(ボール接触点)を考慮します。この事例は、下向きをプラス、上向きをマイナスとしています。荷重の向きによるボール接触状態は、図 A-118のようになります。

Load direction (Ball contact point) should be considered in calculation of lifetime for Vertical axis application. Load direction is defined as plus for downward, and as minus for upward. The status of Ball contact point is indicated in Fig. A-118.

ボールねじ諸元 Ball Screw spec.

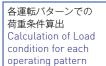
軸径 = φ10mm Shaft dia. = φ10mm

リード = 10mm Lead = 10mm

基本動定格荷重Ca = 3,300N Dynamic Capacity Ca = 3,300N
ボールねじ全長 = 180mm Total length = 180mm

軸方向すきま = 20μm以下 Axial play = 20μm or less

運転条件 Operating Pattern 最高速度 = 0.4m/sec Max Speed = 0.4 m/sec**リード10mmより2,400 min⁻¹ ** 2,400 min⁻¹ because of Lead 10mm 加減速時間 = 0.02 sec Acceleration & Deceleration time = 0.02 sec **図中(1)(3)(5)(7) **1357 in diagram above 等速時間 = 0.2 sec Constant speed time = 0.2 sec **図中②⑥ **26 in diagram above Halt time = 0.1 sec停止時間 = 0.1 sec **4® in diagram above **図中④8 $1 \forall 1 \forall 1 \neq 0.68 \text{sec}$ Cycle time = 0.68sec


A835 A836

基本定格寿命の計算

Calculation of Basic Rating Life

縦軸仕様の場合の基本定格寿命計算は、以下の手順で算出します。

Basic Rating Life is calculated in the following procedure.

各運転パターンでの 速度条件算出 Calculation of Speed condition for each operating pattern

荷重の向き(ボール接触点) ごとの等価荷重、等価回転数の算出 Calculation of Equivalent load, Equivalent revolution in each Load direction (Ball contact point).

休止時間を考慮した 総合寿命の計算

Calculation of total Life with taking halt time into consideration.

荷重の向き(ボール接触点)ごとの 定格寿命を統合した定格寿命の算出 Calculation of merged Basic Rating Life in each Load direction (Ball contact point).

荷重の向き(ボール接触点) ごとの定格寿命の算出 Calculation of Basic Rating Life for each Load direction (Ball contact point).

1)サイクル線図(運転パターン)から荷重条件の算出

番号化した各運転パターンの荷重条件は 以下のようになります。

①下降加速

 $Fa_1 = mq - m\alpha = 10 \times 9.807 - 10 \times 20 = -101.9(N)$

②下降等速

 $Fa_2 = mq = 10 \times 9.807 = 98.1(N)$

③下降減速

 $Fa_3 = mg + m\alpha = 10 \times 9.807 + 10 \times 20 = 298.1(N)$

4)停止

 $F_{a_4} = 0$

⑤上昇加速

 $Fa_5 = mg + m\alpha = 10 \times 9.807 + 10 \times 20 = 298.1(N)$

⑥上昇等速

 $Fa_6 = mq = 10 \times 9.807 = 98.1(N)$

⑦上昇減速

 $Fa_7 = mq - m\alpha = 10 \times 9.807 - 10 \times 20 = -101.9(N)$

(8)停止

 $Fa_8 = 0$

ここで、

m : 移動物質量 = 10 kg

q : 重力加速度 = 9.807 m/sec²

a :加速度

0.4m/sec に達するまでの加速度 $a = 0.4/0.02 = 20 \text{ m/sec}^2$

1) Calculation of Load condition from Operating pattern

Load condition of each operating pattern which is numbered is as follows.

(1) Down & Acceleration

 $Fa_1 = mq - m\alpha = 10 \times 9.807 - 10 \times 20 = -101.9(N)$

②Down & Constant speed area

 $Fa_2 = mq = 10 \times 9.807 = 98.1(N)$

③Down & Deceleration

 $Fa_3 = mq + m\alpha = 10 \times 9.807 + 10 \times 20 = 298.1(N)$

4)Halt

 $F_{a_4} = 0$

(5) Up & Acceleration

 $Fa_5 = mq + m\alpha = 10 \times 9.807 + 10 \times 20 = 298.1(N)$

@Up & Constant speed area

 $Fa_6 = mq = 10 \times 9.807 = 98.1(N)$

①Up & Deceleration

 $Fa_7 = mq - m\alpha = 10 \times 9.807 - 10 \times 20 = -101.9(N)$ ®Halt

 $Fa_8 = 0$

Here,

m: Mass = 10 ka

g: Gravity Acceleration = 9.807 m/sec²

 α : Acceleration

Acceleration up to 0.4m/sec $a = 0.4/0.02 = 20 \text{ m/sec}^2$

2)サイクル線図(運転パターン)から速度条件の算出

番号化した各運転パターンでの速度条件(回転数条件) は以下のようになります。

等速時(②、⑥);

 $0.4 \text{m/sec} = 400 \times 60 \text{ mm/min} = 24,000 \text{mm/min}$ $= 2,400 \, \text{min}^{-1}(\text{U} - \text{F10mm} \, \text{L} \, \text{U})$

加減速時(①、③、⑤、⑦);

上記の平均回転数として、2,400/2 = 1,200 min⁻¹

2) Calculation of Speed condition from Operating pattern

Speed condition (Revolution condition) of each operating pattern which is numbered is as follows.

Constant speed area(2,6);

 $0.4 \text{m/sec} = 400 \times 60 \text{ mm/min} = 24,000 \text{mm/min}$

 $= 2.400 \, \text{min}^{-1} (\text{Lead } 10 \, \text{mm})$

Acceleration and deceleration area (1, 3, 5, 7);

as an average revolution above, $2,400/2 = 1,200 \text{ min}^{-1}$

各運転パターンでの荷重条件と速度条件(回転数条件)の算 出結果は、下表のようになります。

Calculation result of the load condition and speed condition (revolution) for each operating patterns are as below.

45 50000				
Condition 条件	Axial load 軸方向荷重 Fai(N)	Revolution 回転数 Ni(min ⁻¹)	Frequency of use 使用頻度 ti(sec)	
①Down & Acceleration / 下降加速	-101.9	1,200	0.02	
②Down & Constant speed / 下降等速	98.1	2,400	0.2	
③Down & Deceleration / 下降減速	298.1	1,200	0.02	
④Halt / 停止	0	0	0.1	
⑤Up & Acceleration / 上昇加速	298.1	1,200	0.02	
⑥Up & Constant speed / 上昇等速	98.1	2,400	0.2	
⑦Up & Deceleration / 上昇減速	-101.9	1,200	0.02	
®Halt / 停止	0	0	0.1	

荷重条件で、+(プラス)は下向き荷重、-(マイナス)は 上向き荷重となります。

3)荷重の向き(ボール接触点)ごとに、等価荷重、 等価回転数の計算

各運転パターンで作用する荷重と向きが算出できたた め、等価荷重、等価回転数をそれぞれの荷重の向き (ボール接触点)で計算します。

なお、等価荷重、等価回転数の計算は、ページ A825に示 す計算式を使用します。

plus(+) indicates downward load and minus(-) indicates upward load.

3) Calculation of Equivalent load, Equivalent revolution for in each Load direction (Ball contact point)

As we could calculate the applying load and direction in each operating pattern, now we calculate the Equivalent load and Equivalent revolution for each Load direction.

Calculation formula shown in page A825 will be used for calculating Equivalent load and Equivalent revolution.

$$\begin{split} \text{Fam} &= (\frac{Fa_{1}^{3} \cdot N_{1} \cdot t_{1} + Fa_{2}^{3} \cdot N_{2} \cdot t_{2} + Fa_{3}^{3} \cdot N_{3} \cdot t_{3} + + Fa_{i}^{3} \cdot N_{i} \cdot t_{i}}{N_{1} \cdot t_{1} + N_{2} \cdot t_{2} + N_{3} \cdot t_{3} + + N_{i} \cdot t_{i}} \quad)^{1/3} \quad N \\ N_{m} &= \frac{N_{1} \cdot t_{1} + N_{2} \cdot t_{2} + N_{3} \cdot t_{3} + + N_{i} \cdot t_{i}}{t_{1} + t_{2} + t_{3} + + t_{i}} \quad min^{-1} \end{split}$$

荷重の向き(ボール接触点)別の運転条件と、それぞれの等 価荷重、等価回転数の算出結果は下表のようになります。

Now calculation table should be re-arranged as below by load direction, and Equivalent load and Equivalent revolution in each load direction are as follows.

	Downward load / 下向き荷重		Upward load / 上向き荷重		F
Condition 条件	Axial load 軸方向荷重 Fai(N)	Revolution 回転数 Ni(min ⁻¹)	Axial load 軸方向荷重 Fai(N)	Revolution 回転数 Ni(min ⁻¹)	Frequency of use 使用頻度 ti(sec)
①Down & Acceleration 下降加速	_	_	101.9	1,200	0.02
②Down & Constant speed 下降等速	98.1	2,400	_	_	0.2
③Down & Deceleration 下降減速	298.1	1,200	_	_	0.02
④Halt 停止	_	_	_	_	0.1
⑤Up & Acceleration 上昇加速	298.1	1,200	_	_	0.02
⑥Up & Constant speed 上昇等速	98.1	2,400	_	_	0.2
①Up & Deceleration 上昇減速	_	_	101.9	1,200	0.02
®Halt 停止	_	_	_	_	0.1
Equivalence 等価	Fam(d) =129.3	Nm(d) =2,290.9	Fam(u) =101.9	Nm(u) =1,200	Working duration(稼働): 0.48 sec Halt time(停止): 0.2 sec 1 cycle(1サイクル): 0.68 sec

4)荷重の向き(ボール接触点)ごとの定格寿命の算出

荷重の向き(ボール接触点)ごとの等価荷重、等価回転 数を使用して、下向き荷重、上向き荷重での定格寿命を 算出します。

【下向き荷重】

等価荷重Fam(d)と等価回転数Nm(d)をページ A825 の寿命計算式に代入すると、以下のようになります。

4) Calculation of Basic Rating Life for each Load direction (Ball contact point)

Then calculate the Basic Rating Life for downward load, upward load by using the value of Equivalent load, Equivalent revolution in each load direction (Ball contact point).

[Downward load]

Substitute the Equivalment Load Fam(d) and Revolution Nm(d) in the following formula in page

$$L_{10h(d)} = \left(\frac{Ca}{f \cdot Fam(d)}\right)^3 \times \left(\frac{10^6}{60 \cdot Nm(d)}\right) = 69,991$$
 時間 (hours)

ここで、基本動定格荷重Ca = 3,300N. 荷重係数f = 1.2とします。

Here, Basic Dynamic Load Rating Ca = 3,300N, Load factor f = 1.2.

【上向き荷重】

同様にして上向き荷重についても計算します。

(Upward load)

Calculate the upward load as same method as above.

$$L_{10h(u)} = \left(\frac{Ca}{f \cdot Fam(u)}\right)^3 \times \left(\frac{10^6}{60 \cdot Nm(u)}\right) = 272,988$$
 時間 (hours)

5)荷重の向き(ボール接触点)ごとの定格寿命を統合した 定格寿命の算出

ページ A826の式を使用して、荷重の向き(ボール接触 点)ごとの定格寿命L10h(d)、L10h(u)を合成した組み合わせ 寿命を算出します。

5) Calculation of merged Basic Rating Life in each Load direction (Ball contact point)

Calculate the merged Basic Rating Life by combining the Basic Rating Life of each Load direction ($L_{10h(d)}$, $L_{10h(u)}$), with the calculation formula of page A826.

$$L'_{10h} = (L_{10h(d)}^{-10/9} + L_{10h(u)}^{-10/9})^{-9/10} = 58,504$$
 時間(hours)

6)休止時間を考慮した総合寿命の計算

上記の計算は、稼働時間のみの計算結果ですので、1サ イクル中の休止時間を考慮して、総合寿命を算出しま す。

5) Calculation of total Life with taking halt time into consideration

Above calculation is only for the working duration, therefore calculate the total Life with taking halt time in each cycle into consideration.

送りねじ系の駆動トルクの計算

ページ A829に従って送りねじ系の駆動トルクを計算し ます。これは、モータの選定の際に重要となります。 上記事例の場合は、予圧仕様のボールねじでないため、 予圧動トルクは発生しません。そのため加速トルクT₁、 負荷トルクT₂について計算します。

Calculation of Driving Torque for Linear Motion system Calculate Driving Torque for Linear Motion system according to page A829. It is important for motor selection. In the above case, due to backlash type Ball Screw, Preload Dynamic Drag Torque does not occur. Therefore, calculate acceleration Torque T₁ and Load Torque T₂.

$$T = T_1 + T_2 + T_3 + T_4$$
 N·m

T₁: 加速によるトルク(Acceleration Torque) N·m T₂: 負荷トルク(Load Torque) N·m T₃: 予圧動トルク(Preload Dynamic Drag Torque) $N \cdot m$ T₄: その他のトルク(Additional Torque) N·m

1)加速トルク T₁ の算出(Calculation of acceleration Torque T₁)

 $T_1 = \alpha \cdot I = \alpha \text{ (lw+ls)} \text{ N} \cdot \text{m}$

a :角加速度(Angular acceleration) rad/sec² I : 慣性モーメント(Inertia moment) $kq \cdot m^2$ lw : 移動物のモータ軸換算の慣性モーメント $kq \cdot m^2$ (Inertia moment of moving object by motor axis conversion) Is :ねじ軸の慣性モーメント(Inertia moment of Screw Shaft) kg·m²

 $lw = m_W \times (\ell/2\pi)^2 = 2.53 \times 10^{-5} \text{ kg} \cdot \text{m}^2$

mw:移動物質量(Mass of moving object)= 10 kg ℓ : ボールねじリード(Ball Screw Lead) = 0.01 m

 $Is = m_S \times (d^2/8) = (d/2)^2 \pi \gamma \times L \times (d^2/8) = 0.139 \times 10^{-5} \text{ kg} \cdot \text{m}^2$

ms: ねじ軸質量(Mass of Screw Shaft) kg

γ :ねじ軸比重(Specific gravity of Screw Shaft) = 7,850 kg/m³

d : ねじ軸外径(Shaft dia.) = 0.01 m L : ねじ軸長さ(Shaft length) = 0.18 m

 $\alpha = (2\pi N)/60t = 12,566.4 \text{ rad/sec}^2$

N:最高速度(Max speed) = 2,400 min⁻¹ t:加速時間(Acceleration time) = 0.02 sec

 $T_1 = 12,566.4 \times (2.53 + 0.139) \times 10^{-5} = 0.335 \text{ N} \cdot \text{m}$

2) 負荷トルクT₂の算出(Calculation of Load Torque T₂)

 $T_2 = mg \ell/(2\pi\eta) = 0.173 \text{ N} \cdot \text{m}$

m: 移動物質量(Mass of moving object) = 10 kg

g: 重力加速度(Gravity acceleration) = 9.807 m/sec²

 ℓ : ボールねじリード(Ball Screw Lead) = 0.01 m

η: ボールねじ効率(Ball Screw efficiency) = 0.9

3)送りねじ系の駆動トルクTの算出

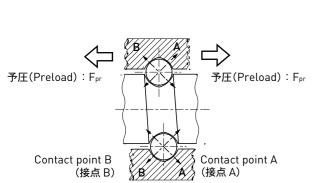
上記の計算より、支持軸受等によるトルクを考慮しない 場合、ボールねじ軸系の駆動トルクは以下となります。

3) Calculation of Driving Torque T for Linear Motion system

In case without consideration of Torque by support Bearings, Driving Torque of Ball Screw is as follows.

 $T = T_1 + T_2 = 0.335 \text{ N} \cdot \text{m} + 0.173 \text{ N} \cdot \text{m} = 0.508 \text{ N} \cdot \text{m}$

例2: 横軸仕様 卓上型小型旋盤


Example 2: Horizontal desk top small lathe

ボールねじ型式と使用条件

Ball Screw model and operating condition

Operating pattern (運転サイクル線図)

図A-119: 使用条件とボール接触状態

Fig A-119: Operating condition and Ball Contact point

(速度) Load (負荷荷重) Fa=200N forward Speed (速度) = 60min⁻¹ (往復) (5) (時間) **(4)** (10) Backward (8) 0.5sec 3.0sec 3.3sec 0.2sec 7.5sec 0.2sec 0.2sec

Max speed (最高速)=1,500min⁻¹

ボールねじ諸元	Ball Screw spec.
軸径 = φ12mm	Shaft dia. = ϕ 12mm
リード = 2mm	Lead = 2mm
ねじ軸谷径 d $=$ ϕ 10.6mm	Shaft Root dia. d = ϕ 10.6mm
基本動定格荷重Ca = 1,900N	Dynamic Capacity $Ca = 1,900N$
取付け間距離 L = 400mm	Mounting span L = 400mm
軸方向すきま = 0μm以下	Axial play = 0μ m or less
移動物質量 m = 10kg	Mass of moving object $m = 10kg$
摺動面摩擦係数 $\mu=0.05$	Sliding surface friction coefficient $\mu=0.05$
予圧荷重 Fpr = 95N(Ca×5%)	Preload $F_{pr} = 95N(Ca \times 5\%)$

Speed

運転条件 Operating Pattern 最高速度 = 50mm/sec Max Speed = 50mm/sec **リード2mmより1.500 min⁻¹ ** 1.500 min⁻¹ because of Lead 2mm サイクル線図:上図参照 Operating pattern: see diagram above ①⑦加速 = 0.2sec \bigcirc Acceleration = 0.2sec ②往路等速 = 3.0sec 2Constant speed(forward) = 3.0sec ③⑨減速 = 0.2sec (3)9 Deceleration = 0.2sec ④⑥⑩停止 = 2.0sec(合計) (4)(6)(0) halt = 2.0sec(total) ⑤切削時間 = 7.5sec ⑤Turning time = 7.5sec ®Constant speed(backward) = 3.3sec ⑧復路等速 = 3.3sec 切削抵抗Fa = 200N Load Fa = 200N切削時速度 = 2mm/sec Cutting speed = 2mm/sec **リード2mmより60min-1 **60min⁻¹ due to 2 mm lead

許容アキシアル荷重の計算

1)座屈荷重の検討

ページ A815の計算式に基づき、座屈荷重を計算します。

$$P = \alpha \times \frac{n\pi^2 E \cdot I}{L^2} \quad N \qquad \qquad I = \frac{\pi}{64} d^4 \quad mm^4$$

上記計算式に、安全率 $\alpha = 0.5$ 、 ヤング率 E = $2.08 \times 10^5 \,\text{N/mm}^2 \,\text{(MPa)}$ 谷径 d=10.6mm、固定 - 固定の取付け係数 n=4、 取付け間距離 L = 400mmを代入します。

P = 15,900N

よって、使用荷重より十分大きく問題ありません。

2) 降伏応力に対する許容荷重の検討

ページ A815の計算式に基づき、計算します。

$$P = \sigma \times A$$
 N

上記計算式に、許容応力 σ =98N/mm²(MPa)、 谷径 d=10.6mmを代入します。

$$P = 8.650 N$$

よって、使用荷重より十分大きく問題ありません。

許容回転数の計算

ページ A816の計算式に基づき、計算します。

Calculation of permissible Axial load

1) Study of Buckling load

Calculate Buckling load according to the following formula in page A815.

$$I = \frac{\pi}{64} d^4 \quad mm^4$$

Substitute safety factor $\alpha = 0.5$. Young's modulus $E = 2.08 \times 10^5 \,\text{N/mm}^2 (\text{MPa})$. Root diameter d = 10.6mm, Fixed — Fixed mounting factor n = 4. mounting span L = 400mm in formula above.

$$P = 15,900N$$

It is more than maximum Load so that there is no problem.

2) Study of permissible Load for yield stress

Calculate permissible Load for yield stress based on the formula in page A815.

$$A = \frac{\pi}{4} d^2 \text{ mm}^2$$

Substitute permissible stress $\sigma = 98 \text{N/mm}^2 \text{(MPa)}$. Root diameter d=10.6mm in the formula above.

$$P = 8,650 N$$

It is more than maximum Load and there is no problem.

Calculation of permissible Revolution

Calculate permissible Revolution based on the formula in page A816

$$N = \beta \times \frac{60 \cdot \lambda^{2}}{2\pi} \times \sqrt{\frac{E \cdot I \cdot g}{\gamma \cdot A \cdot L^{4}}} \quad min^{-1}$$

$$I = \frac{\pi}{64} d^4 \quad mm^4 \qquad \qquad A = \frac{\pi}{4} d^2 \quad mm^2$$

上記計算式に、安全率 $\beta = 0.8$ 、 ヤング率 E = $2.08 \times 10^5 \,\text{N/mm}^2 \,\text{(MPa)}$ 、 重力加速度 $q = 9.8 \times 10^3$ mm/sec² 比重 $\gamma = 7.7 \times 10^{-5} \,\text{N/mm}^3$ 、 谷径 d = 10.6mm、 固定-支持の取付け係数 $\lambda = 3.927$ 、 取付け間距離 L = 400mmを代入します。

 $N = 10,000 \text{ min}^{-1}$

よって、最高回転数より十分大きく問題ありません。

$$A = \frac{\pi}{4} d^2 \quad mm^2$$

Substitute safety factor $\beta = 0.8$, Young's modulus $E = 2.08 \times 10^5 \,\text{N/mm}^2 \,\text{(MPa)}$, gravity acceleration $q = 9.8 \times 10^3 \text{ mm/sec}^2$. material specific gravity $\gamma = 7.7 \times 10^{-5} \,\mathrm{N/mm^3}$, Root diameter d = 10.6mm, Fixed — Support mounting factor $\lambda = 3.927$. mounting span L = 400mm in formula above.

$$N = 10,000 \text{ min}^{-1}$$

Therefore, it is more than maximum Revolution and there is no problem.

Technical descriptionボールねじ技術解説

基本定格寿命の計算

2018年のJIS B1192 第5部の制定により、基本定格寿命 を計算する際に、荷重の向きや予圧荷重を加味するこ とが規定されました。そのため、ミニチュアボールねじ の定格寿命計算もこれらに準じた計算式を適用いたし ます。

オーバーサイズボールにより予圧が作用している場合、 ボール接触状態は図 A-111のように4点接触となって います。ページA827に解説したように、外部荷重によっ て予圧による初期接触状態が変化するため、これらを 考慮して、接触点A、Bそれぞれに作用する荷重、定格寿 命を算出した後、総合寿命を算出します。

各運転パターンでの 荷重条件の算出 Calculation of Load condition for each

operating pattern

各運転パターンでの 速度条件の算出 Calculation of Speed condition for each

operating pattern

左右の接触点での 荷重、速度条件の算出 Calculation of the Load condition, speed condition at left/right contact point.

external load.

Load direction and Preload will be taken into

by JIS B1192-5, which was established in 2018.

Rating Life for Miniature Ball Screws that is

consideration when calculate the Basic Rating Life

Therefore, KSS uses a calculation formula of Basic

In case when preload is effective by oversized Ball,

the contact condition of the Ball is 4 points as per

can be calculated after calculation of Rating Life at

Fig. A-111. As explained in page A827, total Life

contact point A and B due to the change of initial

contact condition under the preload casused by

左右の接触点での等価荷重、 等価回転数の算出 Calculation of Equivalent load, Equivalent revolution at left/right contact point

休止時間を考慮した 総合寿命の計算

Calculation of total Life with taking halt time into consideration.

左右の接触点での定格寿命を統合 した定格寿命の算出 Calculation of merged Basic

Rating Life in each contact point.

左右の接触点で、 それぞれの定格寿命の算出 Calculation of Rating Life at each contact point.

1)サイクル線図(運転パターン)から荷重条件の算出

番号化した各運転パターンの荷重条件は 以下のようになります。

①往路加速

 $Fa_1 = \mu mq + m\alpha = 0.05 \times 10 \times 9.807 + 10 \times 0.25 = 7.4(N)$ ②往路等速

 $Fa_2 = \mu mg = 0.05 \times 10 \times 9.807 = 4.9(N)$

③往路減速

 $Fa_3 = \mu mq - m\alpha = 0.05 \times 10 \times 9.807 - 10 \times 0.25 = 2.4(N)$

4)停止

 $F_{a_4} = 0$

⑤切削時

 $Fa_5 = \mu mq + Fa = 0.05 \times 10 \times 9.807 + 200 = 204.9 (N)$

⑥停止

 $Fa_6 = 0$

⑦復路加速

 $F_{a7} = -(\mu mq + m\alpha) = -(0.05 \times 10 \times 9.807 + 10 \times 0.25) = -7.4(N)$

⑧復路等速

 $Fa_8 = - \mu mq = -0.05 \times 10 \times 9.807 = -4.9(N)$

9復路減速

 $F_{a_9} = - \mu m \alpha + m \alpha = -0.05 \times 10 \times 9.807 + 10 \times 0.25 = -2.4(N)$

10停止

 $Fa_{10} = 0$

ここで、

- m; 移動物質量= 10 kg
- g; 重力加速度= 9.807 m/sec²
- a;加速度

50mm/sec = 0.05m/sec に達するまでの加速度 $a = 0.05 / 0.2 = 0.25 \text{ m/sec}^2$

1) Calculation of Load condition from Operating pattern

Load condition of each operating pattern which is numbered is as follows.

(1) Forward Acceleration

Calculation of Basic Rating Life

conformed to JIS B 1192-5.

 $Fa_1 = \mu mq + m\alpha = 0.05 \times 10 \times 9.807 + 10 \times 0.25 = 7.4(N)$

②Forward at constant speed area

 $Fa_2 = \mu mq = 0.05 \times 10 \times 9.807 = 4.9(N)$

③Forward Deceleration

 $Fa_3 = \mu mq - m\alpha = 0.05 \times 10 \times 9.807 - 10 \times 0.25 = 2.4(N)$ 4)Halt

$F_{a_4} = 0$

5at Turning

 $Fa_5 = \mu mg + Fa = 0.05 \times 10 \times 9.807 + 200 = 204.9(N)$ (6)Halt

$Fa_6=0$

(7) Backward Acceleration

 $F_{a7} = -(\mu mq + m\alpha) = -(0.05 \times 10 \times 9.807 + 10 \times 0.25) = -7.4(N)$

®Backward at constant speed area

 $Fa_8 = -\mu mq = -0.05 \times 10 \times 9.807 = -4.9(N)$

 $F_{a_9} = - \mu ma + m\alpha = -0.05 \times 10 \times 9.807 + 10 \times 0.25 = -2.4(N)$ 10 Halt

 $Fa_{10} = 0$

Here.

- m; Mass = 10 kg
- g; Gravity Acceleration = 9.807 m/sec²
- α : Acceleration

Acceleration which reaches up to 50mm/sec $a = 0.05/0.2 = 0.25 \text{ m/sec}^2$

2)サイクル線図(運転パターン)から速度条件の算出

番号化した各運転パターンでの速度条件(回転数条件) は以下のようになります。

等谏時(②、⑧);

50mm/sec = 50×60 mm/min = 3,000mm/min $= 1,500 \, \text{min}^{-1}(\text{U} - \text{F2mm} \, \text{\sharp} \, \text{\flat})$

加減速時(①、③、⑦、⑨);

上記の平均回転数として、1,500/2= 750 min-1

各運転パターンでの荷重条件と速度条件(回転数条件) の算出結果は、下表のようになります。

2) Calculation of Speed condition from Operating

Speed condition (Revolution condition) of each operating pattern which is numbered as follows.

Constant speed area (2,8);

 $50 \text{mm/sec} = 50 \times 60 \text{ mm/min} = 3,000 \text{mm/min}$ $= 1.500 \, \text{min}^{-1} (\text{Lead } 2 \, \text{mm})$

Acceleration and deceleration area (1), (3), (7), (9); As above average revolution, $1,500/2 = 750 \text{ min}^{-1}$

Calculation result of the load condition and speed condition (revolution) for each operating patterns are as below.

Condition 条 件	Axial load 軸方向荷重 Fai(N)	Revolution 回転数 Ni(min ⁻¹)	Frequency of use 使用頻度 ti(sec)
①Forward Acceleration / 往路加速	7.4	750	0.2
②Forward at Constant speed / 往路等速	4.9	1,500	3.0
③Forward Deceleration / 往路減速	2.4	750	0.2
④Halt / 停止	0	0	1.0
⑤Turning / 切削	204.9	60	7.5
⑥Halt / 停止	0	0	0.5
⑦Backward Acceleration / 復路加速	-7.4	750	0.2
®Backward at constant speed / 復路等速	-4.9	1,500	3.3
⑨Backward Deceleration / 復路減速	-2.4	750	0.2
⑩Halt / 停止	0	0	0.5

3)左右の接触点で、それぞれの荷重条件の算出

予圧荷重によりボールとねじ溝で4点接触をしている 状態が、外部荷重によってページ827(図 A-112)のよう に接触状態が変化します。変化した弾性変位から逆算 し、接触点(A、B)に作用する荷重を以下の式で計算しま す。

【外部荷重の向きが+(プラス)方向の場合】

$$Fai_{(A)} = F_{pr} \times (1 + \frac{Fai}{2^{3/2} \times F_{pr}})^{3/2}$$

【外部荷重の向きがー(マイナス)方向の場合】

$$Fai_{(B)} = F_{pr} \times (1 + \frac{|Fai|}{2^{3/2} \times F_{pr}})^{3/2}$$

ここで、

: 予圧荷重 = 95 N

: 各条件下での軸方向荷重(N) Fai

(A)(B):ボール接触点を表す

上述の各運転条件下での荷重および回転数条件を接触 点(A,B)ごとに計算した結果を表 A-120に示します。

3) Calculation of the Load condition at left/right contact point

Ball contact condition in 4 point between Balls and thread grooves by preload may changes by external load as shown in page 827 (Fig. A-112). Based on the changed Elastic displacement, load applying on the contact point A and B will be calculated by formula below.

[If the direction of the external load is plus(+)]

$$Fai_{(B)} = Fai_{(A)} - Fai$$

[If the direction of the external load is minus(-)]

$$Fai_{(A)} = Fai_{(B)} - |Fai|$$

Here.

Fnr : Preloaded load = 95 N: Axial load in each condition(N) (A),(B): This means contact point

The calculation result of each load condition and revolution condition as per contact point A and B is shown in table A-120.

4)左右の接触点ごとに、等価荷重、等価回転数の計算

それぞれの運転条件下で、接触点A,Bに作用する荷重が 算出できたため、等価荷重、等価回転数をそれぞれの接 触点ごとに計算します。なお、接触点A,Bでは荷重条件 が異なるのみで、速度条件(回転数条件)、使用頻度は同 してす。

なお、等価荷重、等価回転数の計算は、ページA825に示す計算式を使用します。

4) Calculation of Equivalent load, Equivalent revolution at left and right contact point

Load applying on contact point A and B is calculated under each operating condition, then Equivalent load and Equivalent revolution at each contact point will be calculated. However, the speed and frequency of use stay the same, only the load condition will be different. Calculation formula shown in page A825 will be

used for calculating Equivalent load and Equivalent

$$Fam = (\begin{array}{c} -\frac{Fa_1{}^3 \cdot N_1 \cdot t_1 + Fa_2{}^3 \cdot N_2 \cdot t_2 + Fa_3{}^3 \cdot N_3 \cdot t_3 + + Fa_i{}^3 \cdot N_i \cdot t_i}{N_1 \cdot t_1 + N_2 \cdot t_2 + N_3 \cdot t_3 + + N_i \cdot t_i} \end{array})^{1/3} \quad N$$

revolution.

$$N_m = \frac{N_1 \cdot t_1 + N_2 \cdot t_2 + N_3 \cdot t_3 + \dots + N_i \cdot t_i}{t_1 + t_2 + t_3 + \dots + t_i} \quad min^{-1}$$

各運転パターンごとに接触点A,Bに作用する荷重と、それぞれの等価荷重、等価回転数の算出結果は下表のようになります。

The axial load applying on contact point A and B for each condition, Equivalent load and Equivalent revolution are as follows.

表 A-120:接触点ごとの荷重、回転数条件

Table A-120: Load & Revolution condition at each contact point

Condition 条 件	Axial load 軸方向荷重 Fai(N)	Axial load at contact pt. A 接触点Aの 軸方向荷重 Fai⑷(N)	Axial load at contact pt. B 接触点Bの 軸方向荷重 Fai(B)(N)	Revolution 回転数 Ni(min ⁻¹)	Frequency of use 使用頻度 ti(sec)
① Forward Acceleration 往路加速	7.4	99.0	91.6	750	0.2
② Forward at Constant speed 往路等速	4.9	97.6	92.7	1,500	3.0
③ Forward Deceleration 往路減速	2.4	96.3	93.9	750	0.2
④ Halt 停止	0	_	_	0	1.0
⑤ Turning 切削	204.9	222.3	17.4	60	7.5
⑥ Halt 停止	0	_	_	0	0.5
⑦ Backward Acceleration復路加速	-7.4	91.6	99.0	750	0.2
8 Backward at constant speed 復路等速	-4.9	92.7	97.6	1,500	3.3
⑨ Backward Deceleration復路減速	-2.4	93.9	96.3	750	0.2
⑩ Halt 停止	0	_	_	0	0.5
Equivalence 等価		Fam(A)=109.0	Fam(B) = 94.0	Nm=719.2	Working duration (稼働):14.6 sec Halt time(停止):2.0 sec 1 cycle (1サイクル):16.6 sec

-注)接触点A,Bへの荷重計算結果は、すべて絶対値表記です。

Note) Results of applying load at contact point A and B are all absolute number.

5)左右の接触点ごとに、定格寿命の算出

ボール接触点A,Bにおけるそれぞれの等価荷重、等価回 転数を使用して、接触点A,Bでの定格寿命を算出します。

5) Calculation of Rating Life at each contact point

Calculate the Basic Rating Life at contact point A and B by using the value of Equivalent load, Equivalent revolution in each contact point A, B.

【接触点A】

等価荷重Fam(A)と等価回転数 N_m をページA825の寿命計算式に代入すると以下のようになります。

[Contact point A]

Substitute the Equivalent load Fam $_{(A)}$ and Equivalent revolution N_m in the following formula as shown in page A825.

$$L_{10h(A)} = \left(\frac{Ca}{f \cdot Fam_{(A)}}\right)^3 \times \left(\frac{10^6}{60 \cdot N_m}\right) = 71,029$$
 時間 (hours)

【接触点B】

等価荷重Fam(B)と等価回転数NmをページA825の寿命計算式に代入すると以下のようになります。

[Contact point B]

Substitute the Equivalent load Fam $_{(B)}$ and Equivalent revolution N_{m} in the following formula as shown in page A825.

$$L_{10h(B)} = \left(\frac{\text{Ca}}{\text{f \cdot Fam_{(B)}}} \right)^3 \times \left(\frac{10^6}{60 \cdot \text{N}_m} \right) = 110,747$$
 時間 (hours)

ここで、基本動定格荷重Ca = 1,900N, 荷重係数f = 1.2とします。 Here, Basic Dynamic Load Rating Ca = 1,900N, Load factor f = 1.2.

6)左右の接触点での定格寿命を統合した定格寿命の算出

ページA826の式を使用して、接触点A,Bでの定格寿命 (L_{10h(A)}, L_{10h(B)})を合成した組み合わせ寿命を算出します。

6) Calculation of merged Basic Rating Life in each contact point

Calculate merged Basic Rating Life of contact point A, B (L_{10h(A)}, L_{10h(B)}) by using formula in page A 826.

$$L'_{10h} = (L_{10h(A)}^{-10/9} + L_{10h(B)}^{-10/9})^{-9/10} = 46,257$$
 時間(hours)

7)休止時間を考慮した総合寿命の計算

上位の計算は、稼働時間のみの計算結果ですので、1サイクル中の休止時間を考慮して、総合寿命を算出します。

7) Calculation of total Life with taking halt time into consideration

Above calculation is only for the working duration, therefore calculate the total Life with taking halt time into consideration.